Multi-Drug Resistant (MDR) Detection in Klebsiella Pneumoniae in Canary Birds (Serinus canaria) Imported from Malaysia
Downloads
Antimicrobial resistance (AMR) is a top priority for the WHO and the EU Commission, considering it a top 10 threat to global public health. This study provides an overview of the potential spread of Klebsiella pneumoniae, which exhibits multi-drug resistance (MDR), as a reservoir for the spread of resistance genes in the community. Samples were incubated on an MCA medium for isolation, followed by a Gram stain test and an IMViC test for further identification. The Kirby-Bauer diffusion test was used to determine antibiotic sensitivity. Based on the morphological characterization of the cultures, Gram stain results, and biochemical tests, it was found that, of the 150 samples isolated, 12 (8%) were positive for K. pneumoniae; 91.66% (11/12) of the isolates showed the highest level of resistance to amoxicillin, 83.33% (10/12) to tetracycline, 66.66% (8/12) to ciprofloxacin, and 66.66% (8/12) to trimethoprim-sulfamethoxazole. As many as 83.33% (10/12) were identified as MDR as they showed resistance to three to four types of antibiotics. Judicious use of antibiotics, including proper selection of antibiotics and monitoring of their usage patterns, is key to maintaining treatment effectiveness. Joint efforts from various parties are needed to optimize the use of antibiotics and minimize the risk of bacterial resistance.
Agustanty, A. and Budi, A., 2022. Pola Resistency of Vibrio Cholerae Bacteria to the Antibiotic Ciprofloxacin and Tetracycline. Journal Health & Science: Gorontalo Journal Health and Science Community, 6(1), pp.73-78. DOI: https://doi.org/10.35971/gojhes.v5i3.13611
Ahmad, Q. . (2022) “Gambaran Infeksi Klebsiella pneumoniae Penghasil Extended-spectrum β-lactamase (ESBL) Pada Pasien Covid-19 di RSUP Dr. Mohammad Hoesin Periode Januari 2021-JUNI 2021”, Jambi Medical Journal : Jurnal Kedokteran dan Kesehatan, 10(2), pp. 186–198. Available at: https://online-journal.unja.ac.id/kedokteran/article/view/19220
Aklilu, E., Harun, A. and Singh, K.K.B., 2022. Molecular characterization of bla NDM, bla OXA-48, mcr-1 and bla TEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Veterinary Research, 18(1), p.190. DOI: https://doi.org/10.1186/s12917-022-03292-7
Aminul, P., Anwar, S., Molla, M.M.A. and Miah, M.R.A., 2021. Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3(06), pp.301-306. DOI: https://doi.org/10.1016/j.bsheal.2021.11.001
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U. and Salamat, M.K.F., 2018. Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, pp.1645-1658. DOI: https://doi.org/10.2147/IDR.S173867
Aslam, B., Chaudhry, T.H., Arshad, M.I., Muzammil, S., Siddique, A.B., Yasmeen, N., Khurshid, M., Amir, A., Salman, M., Rasool, M.H. and Xia, X., 2022. Distribution and genetic diversity of multi-drug-resistant Klebsiella pneumoniae at the human–animal–environment interface in Pakistan. Frontiers in microbiology, 13, p.898248. https://doi.org/10.3389/fmicb.2022.898248
Council of the European Union, 2023. Proposal for a council recommendation on stepping up EU actions to combat antimicrobial resistance in a one health approach. Official Journal of the European Union. https://health.ec.europa.eu/publications/council-recommendation-stepping-eu-actions-combat-antimicrobial-resistance-one-health-approach_en
Chung, P.Y., 2016. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS microbiology letters, 363(20), p.fnw219. DOI: 10.1093/femsle/fnw219
Sigirci, B.D., Celik, B., Halac, B., Adiguzel, M.C., Kekec, I., Metiner, K., Ikiz, S., Bagcigil, A.F., Ozgur, N.Y., Ak, S. and Kahraman, B.B., 2020. Antimicrobial resistance profiles of Escherichia coli isolated from companion birds. Journal of King Saud University-Science, 32(1), pp.1069-1073. DOI: https://doi.org/10.1016/j.jksus.2019.09.014
ECDC & WHO, 2023. Antimicrobial resistance surveillance in Europe 2023. EU Publications. https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data
Galani, I., Karaiskos, I., Karantani, I., Papoutsaki, V., Maraki, S., Papaioannou, V., Kazila, P., Tsorlini, H., Charalampaki, N., Toutouza, M. and Vagiakou, H., 2018. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eurosurveillance, 23(31), p.1700775. DOI: https://doi.org/10.2807/1560-7917.ES.2018.23.30.1700775
Gómez, M., Valverde, A., Del Campo, R., Rodríguez, J.M. and Maldonado-Barragán, A., 2021. Phenotypic and molecular characterization of commensal, community-acquired and nosocomial Klebsiella spp. Microorganisms, 9(11), p.2344. DOI: https://doi.org/10.3390/microorganisms9112344
Gonzalez-Ferrer, S., Peñaloza, H.F., Budnick, J.A., Bain, W.G., Nordstrom, H.R., Lee, J.S. and Van Tyne, D., 2021. Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infection and immunity, 89(4), pp.10-1128. DOI: https://doi.org/10.1128/IAI.00693-20.
González‐Rivas, F., Ripolles‐Avila, C., Fontecha‐Umaña, F., Ríos‐Castillo, A.G. and Rodríguez‐Jerez, J.J., 2018. Biofilms in the spotlight: Detection, quantification, and removal methods. Comprehensive reviews in food science and food safety, 17(5), pp.1261-1276. DOI: https://doi.org/10.1111/1541-4337.12378
Guerra, M.E.S., Destro, G., Vieira, B., Lima, A.S., Ferraz, L.F.C., Hakansson, A.P., Darrieux, M. and Converso, T.R., 2022. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Frontiers in cellular and infection microbiology, 12, p.877995. DOI: 10.3389/fcimb.2022.877995
Hu, Y., Anes, J., Devineau, S. and Fanning, S., 2021. Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: a hitherto unrecognized zoonotic bacterium. Foodborne pathogens and disease, 18(2), pp.63-84. DOI: https://doi.org/10.1089/fpd.2020.2847
Huy, T.X.N., 2024. Overcoming Klebsiella pneumoniae antibiotic resistance: new insights into mechanisms and drug discovery. Beni-Suef University Journal of Basic and Applied Sciences, 13(1), p.13. DOI: https://doi.org/10.1186/s43088-024-00470-4
Indana, K., Effendi, M.H. and Soeharsono, S., 2021. Uji Resistensi Antibiotik Ampicillin pada Bakteri Escherichia coli yang di Isolasi dari Beberapa Peternakan di Surabaya. Jurnal Peternakan Lingkungan Tropis, 3(1), pp.37-43.
Karimi, K., Zarei, O., Sedighi, P., Taheri, M., Doosti-Irani, A. and Shokoohizadeh, L., 2021. Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumoniae. International journal of microbiology, 2021(1), p.5573388. DOI: https://doi.org/10.1155/2021/5573388
Lee, C.R., Lee, J.H., Park, K.S., Kim, Y.B., Jeong, B.C. and Lee, S.H., 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Frontiers in microbiology, 7, p.895. DOI: https://doi.org/10.3389/fmicb.2016.00895
Li, Y., Kumar, S., Zhang, L., Wu, H. and Wu, H., 2023. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Medicine, 18(1), p.20230707. DOI: https://doi.org/10.1515/med-2023-0707
Maida, S. and Lestari, K.A.P., 2019. Aktivitas antibakteri amoksisilin terhadap bakteri gram positif dan bakteri gram negatif. Jurnal Pijar MIPA, 14(3), pp.189-191.
Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Aguilar, G.R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E. and Johnson, S.C., 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), pp.629-655. DOI: https://doi.org/10.1016/j.lanwpc.2023.100972
Nakhaee, P., Moghadam, H.Z., Shokrpoor, S. and Razmyar, J., 2022. Klebsiella pneumoniae infection in canaries (Serinus canaria Domestica): a case report. Iranian Journal of Veterinary Research, 23(3), p.280. DOI: https://doi.org/10.22099/ijvr.2022.40469.5870
Navon-Venezia, S., Kondratyeva, K. and Carattoli, A., 2017. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS microbiology reviews, 41(3), pp.252-275. DOI: https://doi.org/10.1093/femsre/fux013
O'Neill, J., 2016. Tackling drug-resistant infections globally: final report and recommendations. DOI: 10.5555/20173071720
Paczosa, M.K. and Mecsas, J., 2016. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiology and molecular biology reviews, 80(3), pp.629-661. https://doi.org/10.1128/mmbr.00078-15
Pham, M.H., Beale, M.A., Khokhar, F.A., Hoa, N.T., Musicha, P., Blackwell, G.A., Long, H.B., Huong, D.T., Binh, N.G., Giang, T. and Bui, C., 2023. Evidence of widespread endemic populations of highly multidrug resistant Klebsiella pneumoniae in hospital settings in Hanoi, Vietnam: a prospective cohort study. The Lancet Microbe, 4(4), pp.e255-e263. DOI: https://doi.org/10.1016/S2666-5247(22)00338-X
Putra, M.D.D., Suarjana, I.G.K. and Gelgel, K.T.P., 2023. Isolasi dan Identifikasi Klebsiella sp. pada Anjing Kintamani Diare. Buletin Veteriner Udayana, 15(3), pp.377-382. DOI: 10.24843/bulvet.2023.v15.i03.p05
Pratiwi, R.H., 2017. Mekanisme pertahanan bakteri patogen terhadap antibiotik. Jurnal pro-life, 4(3), pp.418-429. DOI:
Riley, L.W., 2020. Extraintestinal foodborne pathogens. Annual review of food science and technology, 11(1), pp.275-294. DOI: https://doi.org/10.1146/annurev-food-032519-051618
Ramos-Vivas, J., Chapartegui-González, I., Fernández-Martínez, M., González-Rico, C., Fortún, J., Escudero, R., Marco, F., Linares, L., Montejo, M., Aranzamendi, M. and Muñoz, P., 2019. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Scientific reports, 9(1), p.8928. https://doi.org/10.1038/s41598-019-45060-y
Santaniello, A., Sansone, M., Fioretti, A. and Menna, L.F., 2020. Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. International journal of environmental research and public health, 17(9), p.3278. https://doi.org/10.3390/ijerph17093278
Santoso, I. and Rostinawati, T., 2022. Perkembangan Resistensi Antibiotik Meropenem Terhadap Bakteri Pseudomonas aeruginosa, Acinetobacter baumannnii, Serta Klebsiella pneumoniae Di Indonesia. Farmaka, 20(3), pp.123-134.
Shree, S., Suman, E., Kotian, H., Paul, S.H. and Shenoy, S., 2024. Effect of Klebsiella-specific phage on multidrug-resistant Klebsiella pneumoniae-an experimental study. Indian Journal of Medical Microbiology, 47, p.100515. https://doi.org/10.1016/j.ijmmb.2023.100515
Sequeira, R.P., McDonald, J.A., Marchesi, J.R. and Clarke, T.B., 2020. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nature microbiology, 5(2), pp.304-313. https://doi.org/10.1038/s41564-019-0640-1
Setyowati, M.E. and Silviani, Y., 2020, November. Pola Kepekaan Klebsiella pneumoniae terhadap Antibiotik Cefotaxime, Ceftazidime dan Ceftriaxone pada Pasien Pneumonia. In Conference on Innovation in Health, Accounting and Management Sciences (CIHAMS), 1, pp. 153-157. DOI: https://doi.org/10.31001/cihams.v1i.21
Silva-Bea, S., Romero, M., Parga, A., Fernández, J., Mora, A. and Otero, A., 2024. Comparative analysis of multidrug-resistant Klebsiella pneumoniae strains of food and human origin reveals overlapping populations. International Journal of Food Microbiology, 413, p.110605. https://doi.org/10.1016/j.ijfoodmicro.2024.110605
Simanjuntak, H.A., Simanjuntak, H., Maimunah, S., Rahmiati, R. and Situmorang, T.S., 2022. Diameter Zona Hambat Antibiotik Amoxicillin dan Tetracycline terhadap Escherichia coli. Herbal Medicine Journal, 5(2), pp.55-59.
Soleha, T.U. and Edwin, G.W.P., 2019. Pola Resistensi Cephalosporin Generasi III Dan Merofenem pada Bakteri Klebsiella Pneumoniae di Laboratorium Kesehatan Daerah Lampung Tahun 2017. Jurnal Kedokteran Universitas Lampung, 3(1), pp.141-146.
Suarjana, I.G.K. & Gelgel, K.T.P., 2021. Isolation and identification of Klebsiella sp. from nasal cavity in pigs with porcine respiratory disease complex. Indonesian J. Vet. Med., 10(6), pp.917–925. DOI: 10.19087/imv.2021.10.6.917
Shariati, A., Arshadi, M., Khosrojerdi, M.A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M. and Khoshnood, S., 2022. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in public health, 10, p.1025633. DOI: https://doi.org/10.3389/fpubh.2022.1025633
Wareth, G. and Neubauer, H., 2021. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: an observational study on pathogenicity, resistance development and the current situation. Veterinary Research, 52(1), p.16. https://doi.org/10.1186/s13567-020-00875-w
WHO, 2023. GLASS manual for antimicrobial resistance surveillance in common bacteria causing human infection. World Health Organization. Available at: https://www.who.int/publications/i/item/9789240076600
Wu, X., Liu, J., Feng, J., Shabbir, M.A.B., Feng, Y., Guo, R., Zhou, M., Hou, S., Wang, G., Hao, H. and Cheng, G., 2022. Epidemiology, environmental risks, virulence, and resistance determinants of Klebsiella pneumoniae from dairy cows in Hubei, China. Frontiers in microbiology, 13, p.858799. https://doi.org/10.3389/fmicb.2022.858799
Wong, M.H.Y., Chan, E.W.C. and Chen, S., 2015. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrobial agents and chemotherapy, 59(6), pp.3290-3297. DOI: https://doi.org/10.1128/aac.00310-15
Yekani, M., Baghi, H.B., Sefidan, F.Y., Azargun, R., Memar, M.Y. and Ghotaslou, R., 2018. The rates of quinolone, trimethoprim/sulfamethoxazole and aminoglycoside resistance among Enterobacteriaceae isolated from urinary tract infections in Azerbaijan, Iran. GMS hygiene and infection control, 13, p.Doc07. https://doi.org/10.3205/dgkh000313
Zhang, R., Dong, N., Huang, Y., Zhou, H., Xie, M., Chan, E.W.C., Hu, Y., Cai, J. and Chen, S., 2018. Evolution of tigecycline-and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract. Emerging microbes & infections, 7(1), pp.1-11. https://doi.org/10.1038/s41426-018-0129-7
Zhang, S., Yang, G., Ye, Q., Wu, Q., Zhang, J. and Huang, Y., 2018. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Frontiers in microbiology, 9, p.289. https://doi.org/10.3389/fmicb.2018.00289
Copyright (c) 2025 Tri Endah, Mustofa Helmi Effendi, Muhammad ‘Ahdi Kurniawan, Izzatul Istiana, Fifin Kurnia Sari, Dina Agylia Rahmandari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).