Main Article Content

Abstract

This study was conducted to identify the presence of icaA and icaD genes in S. epidermidis and to analyze the relationship between the presence of icaA and icaD genes with the ability of in vitro biofilm formation in S. epidermidis. S. epidermidis isolates from patients and healthy people were collected and PCR was examined to detect icaA and icaD genes. which then continued to examine the ability of biofilm formation by the method of Congo Red Agar. The results of this genotypic and phenotypic examination were then tested for correlation with statistical tests using SPSS 23.0. A total of 40 S. epidermidis isolates were collected, consisting of 20 clinical isolates and 20 isolates of normal flora. The icaA gene was positive in 5 isolates (12.5%), and 8 isolates (20%) were positive for the icaD gene, 3 isolates with icaA and icaD were both positive. One hundred percent of isolates with icaA or icaD positively formed biofilms, but there were 15 isolates (42.9%) who did not have the icaA gene but showed the ability to form biofilms, while 12 isolates (37.5%) who did not have the icaD gene also formed biofilms. Fifty percent of S. epidermidis isolates showed the ability to form biofilms at CRA. The Fisher Exact test showed a significant relationship between the icaA gene and the ability of biofilm formation (p=0.047 (p<0.05)) as well as the icaD gene (p=0.03 (p<0.05)). The icaA and icaD genes have a significant relationship to biofilm formation in S. epidermidis. There was another mechanism in the formation of biofilms that are not dependent on the ica gene.

Keywords

ica gene biofilm Staphylococcus epidermidis

Article Details

How to Cite
Rachmawati, D., Kuntaman, K., & Alimsardjono, L. (2019). The Correlation between icaA and icaD Genes with Biofilm Formation Staphylococcus epidermidis In Vitro. Folia Medica Indonesiana, 55(4), 251–259. https://doi.org/10.20473/fmi.v55i4.24388

References

  1. Abee T, Kovacs A, Kuipers OP, van der Veen S (2011). Biofilm formation and dispersal in gram-positive bacteria. Current Opinion in Biotechnology 22, 172-179
  2. Agarwal A, Jain A (2013). Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci. The Indian Journal of Medical Research 138, 262-266
  3. Arciola CR, Baldassarri L, Montanaro L (2001). Presence of icaA and icaD genes and slime production in a collection of Staphylococcal strains from catheter-associated infections. J Clin Microbiol 39, 2151-6
  4. Arslan S, Ozkardes F (2007). Slime production and antibiotic susceptibility in Staphylococci isolated from clinical samples. Memorias do Instituto Oswaldo Cruz 102, 29-33
  5. Beenken KE, Blevins JS and Smeltzer MS (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and Immunity 71, 4206-4211
  6. Cafiso V, Bertuccio T, Santagati M, Campanile F, Amicosante G, Perilli MG, Selan L, Artini M, Nicoletti G, Stefani S (2004). Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in Biofilm Production. Clin Microbiol Infect 10, 1081-1088
  7. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2004). Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation. Lett Appl Microbiol 39, 420-4
  8. Chaieb K, Mahdouani K, Bakhrouf A (2005). Detection of icaA and icaD loci by polymerase chain reaction and biofilm formation by Staphylococcus epidermidis isolated from dialysate and needles in a dialysis unit. JHosp Infect 61, 225-30
  9. Christensen GD, Simpson WA, Bisno AL, Beachey EH, 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37: 318-26.
  10. Davey ME, O'otole GA, 2000. Microbial Biofilms: from Ecology to Molecular Genetics. Microbiol Mol Biol Rev 64: 847-867.
  11. Dobinski S, Bartscht K, Mack D, 2002. Influence of Tn917 insertion of transcription of the icaADBC operon in six biofilm-negative transposon mutants of Staphylococcus epidermidis. Plasmid 47:10-17.
  12. Donlan RM, 2001. Biofilm Formation: A Clinically Relevant Microbiological Process.Clinical Infectious Diseases 33:1387-92.
  13. Donlan RM, 2001. Biofilms and Device-Associated Infections. Emerging Infectious Diseases 7: 277-81.
  14. Duggirala A, Kenchappa P, Sharma S, et al ., 2007. High-resolution genome profiling differentiated Staphylococcus epidermidis isolated from patients with ocular infections and normal individuals. Invest Ophthalmol Vis Sci 48:3239-3245.
  15. El-Mahallawy HA, Loutfy SA, El-Wakil M, Abd El-Al AK and Morcos H, 2009. Clinical Implications of icaA and icaD Genes in Coagulase Negative Staphylococci and Staphylococcus aureus Bacteremia in Febrile Neutropenic Pediatric Cancer Patients. Pediatr Blood Cancer 52: 824-828
  16. Ferreira AA, Tette PAS, Mendonca RCAS, Soares AS, de Carvalho MM, 2014. Detection of exopolysaccharide production and biofilm-related genes in Staphylococcus spp. isolated from a poultry processing plant. Food Sci. Technol 34: 710-716.
  17. Foka A, Chini V, Petinaki E, Kolonitsiou F, Anastassiou ED, Dimitracopoulos G,
  18. Spiliopoulou I, 2006. Clonality of Slime-Producing Methicillin-Resistant Coagulase-Negative Staphylococci Disseminated in The Neonatal Intensive Care Unit of A University Hospital. Clin Microbiol Infect 12: 1230-1233.
  19. Freeman J, Falkiner FR, Keane CT, 1989. New Method for Detecting Slime Production by Coagulase Negative Staphylococci. J Clin Pathol 42: 872-4.
  20. Gotz F, 2002. Staphylococcus and Biofilms. Mol Microbiol 43: 1367-1378.
  21. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F, 1996. Molecular Basis of Intercellular Adhesion in The Biofilm-Forming Staphylococcus epidermidis. Mol Microbiol 20:1083-91.
  22. Heilmann C, Gotz F, 1998. Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentralbl Bakteriol 287: 69-83.
  23. Jain A, Agarwal A, 2009. Biofilm Production, a Marker of Pathogenic Potential of Colonizing and Commensal Staphylococci. J Microbiol Methods 76: 88-92.
  24. Kaali P, Strömberg E and Karlsson S, 2011. Prevention of Biofilm Associated Infections and Degradation of Polymeric Materials used in Biomedical Applications. Biomedical Engineering, Trends in Materials Science, Mr Anthony Laskovski (Ed.), ISBN: 978-953-307-513-6, InTech.
  25. Kaiser TDL, Pereira EM , dos Santos KRN, Maciel ELN, Chuenck RP, Nunes APF, 2013. Modification of the Congo Red Agar Method to Detect Biofilm Production by Staphylococcus epidermidis. Diagnostic Microbiology and Infectious Disease 75: 235-239
  26. Li H, Xu L, Wang J, Wen Y, Vuong C, Otto M, Gao Q, 2005. Conversion of Staphylococcus epidermidis Strains from Commensal to Invasive by Expression of the ica Locus Encoding Production of Biofilm Exopolysaccharide Hualin. Infection and Immunity 73:3188-3191.
  27. Los R, Sawicki R, Juda M, Stankevic M , Rybojad P, Sawicki M, Malm A & Ginalska G, 2010. A comparative analysis of phenotypic and genotypic methods for the determination of the biofilm-forming abilities of Staphylococcus epidermidis . FEMS Microbiol Lett 310: 97-103.
  28. Madigan MT, Martinko JM, Brock TD, 2006. Brock Biology of Microorganisms. 11th Ed. New Jersey: Pearson Prentice Hall: 617-619.
  29. Mack D , Davies A P , Harris L G , Jeeves R , Pascoe B , Knobloch J K M , Rohde H ,and Wilkinson T S. Moriarty T.F.et al, 2013. Staphylococcus epidermidis in Biomaterial-Associated Infections, Biomaterials Associated Infection: Immunological Aspects 25.
  30. Mack D, Fischer T L ,Krokotsch A, Leopold K, Hartmann R, Egge H et al ., 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear1,6-linkedglucosaminoglycan: purification and structur alanalysis. J Bacteriol 178: 175-83.
  31. Mariana NS, Salman SA, Neela V, Zamberi S, 2009. Evaluation of Modified Congo Red Agar for Detection of Biofilm Produced by Clinical Isolates of Methicillin- Resistance Staphylococcus aureus. African Journal of Microbiology Research 3: 330-338.
  32. McCann MT, Gilmore BF, Gorman SP, 2008. Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol 60: 1551-1571
  33. Moretro T, Hermansen L, Holck AL, Sidhu MS, Rudi K & Langsrud S, 2003. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Applied and Environmental Microbiology 69: 5648-5655.
  34. Nasr RA, AbuShady HM, Hussein HS, 2012. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. The Egyptian Journal of Medical Human Genetics 13: 269-274.
  35. O'Gara JP, 2007. ica and Beyond: Biomechanisms and Regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270: 179-188.
  36. Oliveira A and Cunha M, 2010. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Research Notes 3:260.
  37. Otto, 2008. Staphylococcal Biofilms. Curr Top Microbiol Immunol 322: 207-228.
  38. Otto M, 2009. Staphylococcus epidermidis - the "Accidental” Pathogen. Nat Rev Microbiol 7: 555-567.
  39. Pinheiro L, Brito CI, Pereira VC, de Oliveira A, Camargo CH, de Lourdes M, and da Cunha R, 2014. Reduced susceptibility to vancomycin and biofilm formation in methicillin-resistant Staphylococcus epidermidis isolated from blood cultures. Mem Inst Oswaldo Cruz 109: 871-8.
  40. Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W, 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44: 3357-63.
  41. Reid G, 1999. Biofilms in infectious disease and on medical devices. Int. J. Antimic 11: 223-6.
  42. Satorres SE, Alcara´z LE, 200. Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Cent Eur J Public Health 15: 87-90.
  43. Stanley NR & Lazazzera BA, 2004. Environmental signals and regulatory pathways that influence biofilm formation. Molecular Microbiology 52: 917-924.
  44. Terki IK, Hassaine H, Oufrid S, Bellifa S, Mhamedi I, Lachachi M, Timinouni M, 2013. Detection of icaA and icaD genes and Biofilm Formation in Staphylococcus spp. Isolated from Urinary Catheters at The University Hospital of Tlemcen (Algeria). African Journal of Microbiology Research 7: 5350-5357.
  45. Toledo-Arana A, Merino N, Vergara-Irigaray M., Débarbouillé M, Penadés JR & Lasa I, 2005. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. Journal of Bacteriology 187: 5318-5329.
  46. Von Eiff C, Peters G, Heilmann C, 2002. Pathogenesis of Infections Due to Coagulase-Negative Staphylococci. Lancet Infect Dis 2: 677-685.
  47. Yazdani R, Oshaghi M, Havayi A, Pishva E, Salehi R, Sadeghizadeh M & Foroohesh, H, 2006. Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infections. Iranian Journal of Public Health 35: 25-28.
  48. Zhou S, Chao X, Fei M, Dai Y and Liu B. 2013. Analysis of S. epidermidis icaA and icaD genes by Polymerase Chain Reaction and Slime Production: A Case Control Study. BMC Infectious Diseases 13:242.
  49. Ziebuhr W, Hennig S, Eckart M, Kranzler H, Batzilla C, Kozitskaya, 2006. Nosocomial Infections by Staphylococcus epidermidis: How A Commensal Bacterium Turns into A Pathogen. International Journal of Antimicrobial Agents 28S: S14-S20