Main Article Content
Abstract
Highlights:
- Malaria is prevalent in many populations of communities despite preventive measures.
- The experimental was screened for bioactive components which could be the reason for the antimalarial effect and the plant shows dose dependent antimalarial activity.
Abstract :
Malaria has been one of the world's worst killer diseases throughout recorded human history. Despite attempts to eradicate the disease, it remains a global burden. This could be a result of parasite resistance to current therapy. However, this research aimed at evaluating the in vitro antimalarial activity of ethanolic extracts of Terminalia mantaly on Plasmodium falciparum. The plant extracts were prepared by cold maceration in 70% ethanol and air-dried by a rotary evaporator. The phytochemical analysis was carried out using standard procedures outlined in the Analytical methods of the Association of Official Analytical Chemists (AOAC, 1990) which indicates the presence of tannins, alkaloids, saponins, flavonoids, glycosides, phenol, steroids, and balsam. The in vitro antimalarial assay was carried out according to the method described by WHO (2001). All data were represented as Mean ± Standard deviation. Ethanolic extracts of the three parts of the plant were subjected to in vitro antimalarial activity at three concentrations (300 mg, 150 mg, and 75 mg) in four replicates with artemether (standard drug) as a positive control. Stem bark at 300 mg/kg completely cleared the parasites with a 0.00% parasitaemia rate and there was no significant difference when compared with positive control at p<0.005 value of 1.00. This study affirms the use of the plant for the treatment of malaria.
Keywords
Article Details
Copyright (c) 2023 Folia Medica Indonesiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Folia Medica Indonesiana is a scientific peer-reviewed article which freely available to be accessed, downloaded, and used for research purposes. Folia Medica Indonesiana (p-ISSN: 2541-1012; e-ISSN: 2528-2018) is licensed under a Creative Commons Attribution 4.0 International License. Manuscripts submitted to Folia Medica Indonesiana are published under the terms of the Creative Commons License. The terms of the license are:
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
You are free to :
Share ” copy and redistribute the material in any medium or format.
Adapt ” remix, transform, and build upon the material.
References
- Abdulrazaq A, Abdulkadir B, Isyaku NT, et al (2020). Invitro antimalarial activity of Extracts of Some Indigenous Plant Species in Kebbi State. UMYU journal of microbiology research.50(2):1-10
- A Driss, M Jacqueline, O Nana, et al. (2011). Genetic polymorphisms linked to susceptibility to malaria Malar. J., (10):271
- Afnan Alqethami, Amal Y Aldhebiani (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening, Saudi Journal of Biological Sciences 28(1):805-812
- Akira I, Chiaki I, Mika Y, et al (2001). A potent antimalarial activity of Hydrangea macrophylla var. Otaksa leaf extract against Plasmodium yoelii 17XL in mice. Parasitology International, 50:33-39
- Bekono BD, Ntie-kang F, Owono LCO (2020). The potential antimalarial compounds derived from African Medicinal plants: A review of pharmacological evaluations from 2013 to 2019. Malaria Journal. 19:183
- Carter JA, Ross AJ, Neville BG, et al (2005). Developmental impairments following severe falciparum malaria in children. Trop Med Int Health.10(1):3–10.
- Ebele OP, Treasure UN, Gerald UW et al. (2021). Phytochemical screening and antimicrobial evaluation of ethanol extract and fractions of the leaf of Terminalia mantaly H. Perrier (Combretaceae). Journal of Pharmacognosy and Phytochemistry, 10(3):07-10.
- Ekasari W, Basuki DR, Arwati H et al. (2021). Antiplasmodial activity of Ethanolic extract of Cassia spectabilis DC leaf and its inhibition effect in Heme detoxification. BMC Complementary Medicine and Therapies, 21, 71.
- Emilie KI, Otis TB, David JN (2015). Hepatic tolerance study of hydro-alcoholic extract of Terminalia mantaly H. Perrier (Combretaceae) in rats. Journal of phytopharmacology, 4(3):164-171
- EMS Hodel, C Csajka, F Ariey,et al. (2013). Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania Antimicrob. Agents Chemother., 57:950- 958
- Evans WC (1995). Textbook on pharmacognosy. 13th Edition. Baliere-Tidall, London.
- Fenta M, Kahaliw W (2019). Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium berghei infected mice. Journal of experimental pharmacology, 11:121-134
- Gebrehiwot S, Shumbahri M, Eyado et al (2019). Phytochemical screening and in vivo antimalarial activity of two traditionally used medicinal plants of Afar region, Ethiopia against Plasmodium berghei in Swiss Albino mice. Journal of parasitology research.2019:8
- Hagazy K, Sibhat GG, Karim A, et al (2020). Antimalarial activity of Meriandra dianthera leaf extracts in Plasmodium berghei infected mice. Evidence-based complementary and alternative medicine, 2020:8980212
- Kurniawan RB, Wardhani P, Arwati H, et al (2020). Association o parasite Density and Hematological Parameters od Plasmodium vivax- and Palsmodium falciparum-infected Patients Attending Merauke General Hospital. Papua Indonesia. Open Access Maced J Med Sci 8, 825-31.
- Kurniawan RB, Wardhani P, Arwati H, et al (2020). Association of parasite Density and Hematological Parameters Plasmodium vivax- and Plasmodium falciparum-infected Patients Attending Merauke General Hospital. Papua Indonesia. Open Access Maced J Med Sci 8, 825-31.
- Kokwaro JO (2009). Medicinal plants of East Africa. Nairobi University Press. 3rd Edition.Nairobi
- Kweyamba PA, Zofou D, Nyindo et al (2019). Invitro and invivo studies on antimalarial activity of Commiphora Africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malarial Journal, 18:119
- Marie TKR, Mfouapon HM, Kengne EAM, et al (2018). Anti-Plasmodium falciparum activity of extracts from 10 Cameroonian medicinal plants. Medicine. 18:5-115
- Mayer DC, G Bruce M, Kochurova O, et al (2009). Antimalarial activity of a cis-terpenone. Malaria Journal, 8(139):1-4.
- Mbouna CDJ, Kouipou RMT, Keumoe R, et al (2018). Potent Antiplasmodial extracts and fractions from Terminalia mantaly and Terminalia superba. Malaria journal, 17(142):1-10
- Mudi SY. Muhammad A. (2009). Antimalaria activity of ethanolic extracts of leaves of Terminalia catappa. L. combretaceae (indian almond). Bayero journal of pure and applied sciences, 2(1): 14 - 18
- Musila MF, Dossaji SF, Nguta JM, et al (2013). In vivo antimalarial activity, toxicity and phytochemical screening of selected antimalarial plants. Journal of Ethnopharmacology, 146(2):557-61.
- Otubanjo AO (2013). Parasites of man and animal. Concept Publications Limited, Lagos. pp. 193-222
- Pedronic HC, Betton CC, Splalding SM et al (2006). Plasmodium: Development of Irreversible experimental malaria model in Wister rats. Experimental Parasitology, 113: 193-196.
- Samuel B and Adekunle YA (2021). Isolation and structure elucidation of anti-malarial principles from Terminalia mantaly H. Perrier stem bark. International Journal of Biological and Chemical Sciences, 15(1):282-292.
- Tali MBT, Mbouna CDJ, Tchokouaha LRY, et al (2020). In Vivo Antiplasmodial activity of Terminalia mantaly Stem bark aqueous extract in mice infected by Plasmodium berghei. Journal of Parasitology Research. 2020:1-9
- Taylor DJ, Green NPO, Stout GW (2006). Biological science. Third edition. Cambridge University Press. Pp 507
- Teka T, Awgichew T, Kassahun H (2020). Antimalarial activity of the leaf latex of Aloe weloensis against Plasmodium berghei in mice. Journal of Tropical Medicine, 2020:1397043
- TK Ngouana, CDJ Mbouna, RMT Kuipou, et al (2015).Potent and synergistic extract combinations from Terminalia catappa, Terminalia mantaly and Monodora tenuifolia against pathogenic yeasts Medicines, 2:220-235
- Thwing J, Eisele TP, Steketee RW (2011). Protective efficacy of malaria case management and intermittent preventive treatment for preventing malaria mortality in children: a systematic review for the Lives Saved Tool. BMC Public Health. 11 Suppl 3(Suppl 3):S14.
- Trager W, Jensen JB (1976). Human malaria parasites in continuous culture. Science, 193, 673–675.
- VPK Titanji, D Zofou MN (2008). Ngemenya.The Antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicinie. Afr. J. Tradit., Complementary Altern. Med., 5 (3) :302-321.
- World Health Organisation (2001). Drug Resistance to Malaria. Retrieved from www.who.org on March 27, 2019
- World Health Organization (2001). In vitro micro test (MarkIII) for the assessment of the response of Plasmodium Falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva. Accessed on March 27, 2019
- World Health Organization (2006). Guidelines for the Treatment of Malaria. Geneva. Accessed on March 29, 2019
- World Health Organization (2009). World Malaria Report. Geneva. Accessed from www.who.org on April 16, 2019
- World Health Organisation (2019). World Malaria Report. Geneva, Switzerland. Retrieved from https://apps.who.int/iris/handle/10665/27 5867 on July 17, 2019
- Z Desta, and D A.Flockhart. (2017). Pharmacogenetics of drug metabolism. Clinical and Translational Science: Principles of Human Research (Second edition), Elsevier Inc.327-345
References
Abdulrazaq A, Abdulkadir B, Isyaku NT, et al (2020). Invitro antimalarial activity of Extracts of Some Indigenous Plant Species in Kebbi State. UMYU journal of microbiology research.50(2):1-10
A Driss, M Jacqueline, O Nana, et al. (2011). Genetic polymorphisms linked to susceptibility to malaria Malar. J., (10):271
Afnan Alqethami, Amal Y Aldhebiani (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening, Saudi Journal of Biological Sciences 28(1):805-812
Akira I, Chiaki I, Mika Y, et al (2001). A potent antimalarial activity of Hydrangea macrophylla var. Otaksa leaf extract against Plasmodium yoelii 17XL in mice. Parasitology International, 50:33-39
Bekono BD, Ntie-kang F, Owono LCO (2020). The potential antimalarial compounds derived from African Medicinal plants: A review of pharmacological evaluations from 2013 to 2019. Malaria Journal. 19:183
Carter JA, Ross AJ, Neville BG, et al (2005). Developmental impairments following severe falciparum malaria in children. Trop Med Int Health.10(1):3–10.
Ebele OP, Treasure UN, Gerald UW et al. (2021). Phytochemical screening and antimicrobial evaluation of ethanol extract and fractions of the leaf of Terminalia mantaly H. Perrier (Combretaceae). Journal of Pharmacognosy and Phytochemistry, 10(3):07-10.
Ekasari W, Basuki DR, Arwati H et al. (2021). Antiplasmodial activity of Ethanolic extract of Cassia spectabilis DC leaf and its inhibition effect in Heme detoxification. BMC Complementary Medicine and Therapies, 21, 71.
Emilie KI, Otis TB, David JN (2015). Hepatic tolerance study of hydro-alcoholic extract of Terminalia mantaly H. Perrier (Combretaceae) in rats. Journal of phytopharmacology, 4(3):164-171
EMS Hodel, C Csajka, F Ariey,et al. (2013). Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania Antimicrob. Agents Chemother., 57:950- 958
Evans WC (1995). Textbook on pharmacognosy. 13th Edition. Baliere-Tidall, London.
Fenta M, Kahaliw W (2019). Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium berghei infected mice. Journal of experimental pharmacology, 11:121-134
Gebrehiwot S, Shumbahri M, Eyado et al (2019). Phytochemical screening and in vivo antimalarial activity of two traditionally used medicinal plants of Afar region, Ethiopia against Plasmodium berghei in Swiss Albino mice. Journal of parasitology research.2019:8
Hagazy K, Sibhat GG, Karim A, et al (2020). Antimalarial activity of Meriandra dianthera leaf extracts in Plasmodium berghei infected mice. Evidence-based complementary and alternative medicine, 2020:8980212
Kurniawan RB, Wardhani P, Arwati H, et al (2020). Association o parasite Density and Hematological Parameters od Plasmodium vivax- and Palsmodium falciparum-infected Patients Attending Merauke General Hospital. Papua Indonesia. Open Access Maced J Med Sci 8, 825-31.
Kurniawan RB, Wardhani P, Arwati H, et al (2020). Association of parasite Density and Hematological Parameters Plasmodium vivax- and Plasmodium falciparum-infected Patients Attending Merauke General Hospital. Papua Indonesia. Open Access Maced J Med Sci 8, 825-31.
Kokwaro JO (2009). Medicinal plants of East Africa. Nairobi University Press. 3rd Edition.Nairobi
Kweyamba PA, Zofou D, Nyindo et al (2019). Invitro and invivo studies on antimalarial activity of Commiphora Africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania. Malarial Journal, 18:119
Marie TKR, Mfouapon HM, Kengne EAM, et al (2018). Anti-Plasmodium falciparum activity of extracts from 10 Cameroonian medicinal plants. Medicine. 18:5-115
Mayer DC, G Bruce M, Kochurova O, et al (2009). Antimalarial activity of a cis-terpenone. Malaria Journal, 8(139):1-4.
Mbouna CDJ, Kouipou RMT, Keumoe R, et al (2018). Potent Antiplasmodial extracts and fractions from Terminalia mantaly and Terminalia superba. Malaria journal, 17(142):1-10
Mudi SY. Muhammad A. (2009). Antimalaria activity of ethanolic extracts of leaves of Terminalia catappa. L. combretaceae (indian almond). Bayero journal of pure and applied sciences, 2(1): 14 - 18
Musila MF, Dossaji SF, Nguta JM, et al (2013). In vivo antimalarial activity, toxicity and phytochemical screening of selected antimalarial plants. Journal of Ethnopharmacology, 146(2):557-61.
Otubanjo AO (2013). Parasites of man and animal. Concept Publications Limited, Lagos. pp. 193-222
Pedronic HC, Betton CC, Splalding SM et al (2006). Plasmodium: Development of Irreversible experimental malaria model in Wister rats. Experimental Parasitology, 113: 193-196.
Samuel B and Adekunle YA (2021). Isolation and structure elucidation of anti-malarial principles from Terminalia mantaly H. Perrier stem bark. International Journal of Biological and Chemical Sciences, 15(1):282-292.
Tali MBT, Mbouna CDJ, Tchokouaha LRY, et al (2020). In Vivo Antiplasmodial activity of Terminalia mantaly Stem bark aqueous extract in mice infected by Plasmodium berghei. Journal of Parasitology Research. 2020:1-9
Taylor DJ, Green NPO, Stout GW (2006). Biological science. Third edition. Cambridge University Press. Pp 507
Teka T, Awgichew T, Kassahun H (2020). Antimalarial activity of the leaf latex of Aloe weloensis against Plasmodium berghei in mice. Journal of Tropical Medicine, 2020:1397043
TK Ngouana, CDJ Mbouna, RMT Kuipou, et al (2015).Potent and synergistic extract combinations from Terminalia catappa, Terminalia mantaly and Monodora tenuifolia against pathogenic yeasts Medicines, 2:220-235
Thwing J, Eisele TP, Steketee RW (2011). Protective efficacy of malaria case management and intermittent preventive treatment for preventing malaria mortality in children: a systematic review for the Lives Saved Tool. BMC Public Health. 11 Suppl 3(Suppl 3):S14.
Trager W, Jensen JB (1976). Human malaria parasites in continuous culture. Science, 193, 673–675.
VPK Titanji, D Zofou MN (2008). Ngemenya.The Antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicinie. Afr. J. Tradit., Complementary Altern. Med., 5 (3) :302-321.
World Health Organisation (2001). Drug Resistance to Malaria. Retrieved from www.who.org on March 27, 2019
World Health Organization (2001). In vitro micro test (MarkIII) for the assessment of the response of Plasmodium Falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine/pyrimethamine and artemisinin. Geneva. Accessed on March 27, 2019
World Health Organization (2006). Guidelines for the Treatment of Malaria. Geneva. Accessed on March 29, 2019
World Health Organization (2009). World Malaria Report. Geneva. Accessed from www.who.org on April 16, 2019
World Health Organisation (2019). World Malaria Report. Geneva, Switzerland. Retrieved from https://apps.who.int/iris/handle/10665/27 5867 on July 17, 2019
Z Desta, and D A.Flockhart. (2017). Pharmacogenetics of drug metabolism. Clinical and Translational Science: Principles of Human Research (Second edition), Elsevier Inc.327-345