Main Article Content

Abstract

Highlights:


1. It is essential to conduct research on SARS-CoV-2 for the purpose of acquiring further understanding, especially concerning the production of antibodies examined using antibody titer blood tests.
2. Although the relationship between the examined variables is not significant, this study offers valuable information on blood test results after the COVID-19 vaccination, which can serve as scientific evidence for further research.


 


Abstract


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that infects the respiratory system by attacking the mucous and epithelial cells. This infection commonly leads to an increase in lymphocyte count as an immune response to invading pathogens. Moreover, antibodies bind and inactivate foreign substances to destroy pathogens and inhibit their replication. These mechanisms prompt the objective of this study, which was to define the relationship between lymphocyte count and SARS-CoV-2 antibody level. This analytical observational study used a cross-sectional approach with quantitative analysis methods and purposive sampling. Healthy donors who had received coronavirus disease (COVID-19) vaccines provided the samples for this study. A total of 30 blood samples were collected from the Blood Transfusion Center of the Indonesian Red Cross Surabaya Area. This study was conducted in May 2022 at two distinct locations. The examination of lymphocytes was carried out using the flow cytometry method in the Hematology Laboratory, Department of Medical Laboratory Technology, Politeknik Kesehatan Kemenkes Surabaya, Surabaya, Indonesia. In addition, the antibody titer test using the enzyme-linked immunosorbent assay (ELISA) method was performed in the Immunoserology Laboratory of the Surabaya Health Laboratory Center, Surabaya, Indonesia. The analysis revealed an average lymphocyte concentration of 2.2633 x 103/µl and an average antibody level of 0.2197 according to the optical density (OD) ratio. The data analysis was performed using Spearman's rank correlation statistical test (p<0.005), and the results indicated a lack of significance with p=0.262. In conclusion, there is no relationship between total lymphocyte count and SARS-CoV-2 antibody level. 

Keywords

SARS-CoV-2 Antibody lymphocyte ELISA Optical Density Tropical Disease

Article Details

How to Cite
Adelia Gita Prasasti, Evy Diah Woelansari, Suhariyadi, & Anita Dwi Anggraini. (2023). Lymphocyte Count and SARS-CoV-2 Antibody Level in Healthy Donors’ Blood at an Indonesian Blood Transfusion Center. Folia Medica Indonesiana, 59(4), 335–340. https://doi.org/10.20473/fmi.v59i4.38954

References

  1. Ainu rohmah, S., Purwaeni, E., & Kafesa, A. (2020). Perbandingan Jumlah Leukosit Pada Penderita Tuberkulosis Sebelum Dan Sesudah Pengobatan Obat Anti Tuberkulosis Fase …. Jurnal Kesehatan
  2. Rajawali, 10(2), 84–94. http://ojs.rajawali.ac.id/index.php/JKR/article/view/61
  3. Banga Ndzouboukou, J. L., Zhang, Y. di, Lei, Q., Lin, X. song, Yao, Z. jie, Fu, H., Yuan, L. yong, & Fan, X.
  4. lin. (2021). Human IgM and IgG Responses to an Inactivated SARS-CoV-2 Vaccine. Current Medical
  5. Science, 41(6), 1081–1086. https://doi.org/10.1007/s11596-021-2461-8
  6. Cheng, Z. J., Xue, M., Zheng, P., Lyu, J., Zhan, Z., Hu, H., Zhang, Y., Zhang, X. D., & Sun, B. (2021). Factors
  7. affecting the antibody immunogenicity of vaccines against sars-cov-2: A focused review. Vaccines, 9(8),
  8. –11. https://doi.org/10.3390/vaccines9080869
  9. Choi, W. S., & Cheong, H. J. (2021). COVID-19 vaccination for people with comorbidities. Infection and
  10. Chemotherapy, 53(1), 155–158. https://doi.org/10.3947/IC.2021.0302
  11. Hutapea, R. D. (2021). ANALISIS KADAR ANTIBODI SPIKE-RECEPTOR BINDING DOMAIN PADA
  12. PENERIMA VAKSIN INACTIVATED VIRUS SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2.
  13. Iqbal, M., Pratikstha, A. D. I., Studi, P., Dokter, P., & Sriwijaya, U. (2021). HUBUNGAN INDEKS MASSA TUBUH ( IMT ) DAN UKURAN LINGKAR PERUT TERHADAP KADAR ANTIBODI SARS - CO V- 2 DAN UKURAN LINGKAR PERUT TERHADAP KAD A R ANTIBODI SARS - CO V- 2.
  14. Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M.
  15. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose,
  16. N. A., Corbett, K. S., Morabito, K. M., O’Dell, S., Schmidt, S. D., Swanson, P. A., … Beigel, J. H.
  17. (2020). An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of
  18. Medicine, 383(20), 1920–1931. https://doi.org/10.1056/nejmoa2022483
  19. Kementerian Kesehatan Republik Indonesia. (2018). Kementerian Kesehatan Republik Indonesia. Kementerian
  20. Kesehatan RI, 1.
  21. Kleina, S. L., Marriott, I., & Fish, E. N. (2014). Sex-based differences in immune function and responses to
  22. vaccination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 109(1), 9–15.
  23. https://doi.org/10.1093/trstmh/tru167
  24. Lagunas-Rangel, F. A. (2020). Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in
  25. patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Journal of Medical
  26. Virology, 92(10), 1733–1734. https://doi.org/10.1002/jmv.25819
  27. Laili, I. (2020). PENGARUH ANTIBODI IgM DAN IgG TERHADAP SEVERITAS COVID-19 PENGARUH ANTIBODI IgM DAN IgG TERHADAP SEVERITAS COVID-19. 2–9.
  28. Morales-Núñez, J. J., Muñoz-Valle, J. F., Torres-Hernández, P. C., & Hernández-Bello, J. (2021). Overview of neutralizing antibodies and their potential in COVID-19. Vaccines, 9(12), 1–22. https://doi.org/10.3390/vaccines9121376
  29. Nisnawati, Niken, & Yusuf, R. N. (2021). Perbedaan jumlah limfositpada tenaga kesehatan yang sudah
  30. menerima vaksin dosis lengkap dengan yang tidak menerima vaksin COVID - 19 di RSUD Aceh Singkil.
  31. Jurnal Kesehatan Saintika Meditory, 2(4657), 94–108.
  32. Ramanathan, K., Antognini, D., Combes, A., Paden, M., Zakhary, B., Ogino, M., Maclaren, G., & Brodie, D.
  33. (2020). Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host and Microbe,
  34. January, 19–21.
  35. ROITT, I. (1992). Essential Immunology. In Revista do Instituto de Medicina Tropical de São Paulo (Vol. 34,
  36. Issue 1). https://doi.org/10.1590/s0036-46651992000100014
  37. Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A.,
  38. Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J. C., Eckel, R. H., Matsuzawa, Y., & Després,
  39. J. P. (2020). Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS
  40. and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinology, 16(3), 177–189.
  41. https://doi.org/10.1038/s41574-019-0310-7
  42. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin,
  43. transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98.
  44. https://doi.org/10.1016/j.jare.2020.03.005
  45. Tiara, D., Tiho, M., & Mewo, Y. M. (2016). Gambaran kadar limfosit pada pekerja bangunan. Jurnal EBiomedik, 4(2), 2–5. https://doi.org/10.35790/ebm.4.2.2016.14620
  46. Watanabe, M., Balena, A., Tuccinardi, D., Tozzi, R., Risi, R., Masi, D., Caputi, A., Rossetti, R., Spoltore, M. E.,
  47. Filippi, V., Gangitano, E., Manfrini, S., Mariani, S., Lubrano, C., Lenzi, A., Mastroianni, C., & Gnessi, L.
  48. (2022). Central obesity, smoking habit, and hypertension are associated with lower antibody titres in
  49. response to COVID-19 mRNA vaccine. Diabetes/Metabolism Research and Reviews, 38(1).
  50. https://doi.org/10.1002/dmrr.3465