Antimicrobial Resistance Profile of MDR & Non-MDR Meropenem-Resistant Pseudomonas aeruginosa Isolates of Patients in Intensive Care Unit of Tertiary Hospital
Downloads
Pseudomonas aeruginosa is one of the gram-negative bacteria that causes infection in the Intensive Care Unit (ICU) which is easily resistant. Patients infected with carbapenem-resistant P. aeruginosa are predicted to have a poor prognosis. This study aims to know the resistance profile of meropenem-resistant P. aeruginosa in the ICU. The results of this study can be used as a measure on the success of antimicrobial resistance control, infection control programs and become a reference for empirical therapy in the ICU. This study used a cross-sectional retrospective descriptive research method and was carried out at the Clinical Microbiology Laboratory of Sanglah Hospital Denpasar for three years, from 2018 to 2020. The results showed 38 of the 93 isolates of P. aeruginosa in the ICU were resistant to meropenem and were derived from sputum and urine. The percentage of meropenem-resistant P. aeruginosa isolates was higher in the multi-drug-resistant group and mostly came from sputum specimens. In 2018, Non-MDR meropenem-resistant P. aeruginosa isolates was that 100% sensitive to all other antibiotics used to treat P. aeruginosa infections, including; ceftazidime, cefepime, ciprofloxacin, gentamicin, amikacin, and piperacillin-tazobactam. In 2019 no meropenem-resistant P. aeruginosa isolates were found. In 2020, its sensitivity to antibiotics ceftazidime and piperacillin-tazobactam was 20.0%, ciprofloxacin 60.0% and to antibiotics gentamicin and amikacin 100%. MDR meropenem-resistant P. aeruginosa isolates in 2018 were still sensitive to ceftazidime (15.4%) and amikacin (69.2%) antibiotics, while in 2019 they were only sensitive to amikacin (37.5%). In 2020, P. aeruginosa isolates were sensitive to the antibiotics ceftazidime and cefepime (11.1%), piperacillin-tazobactam (22.2%), and amikacin (88.9%). Amikacin may be the choice of treatment for MDR meropenem-resistant P. aeruginosa.
Ryan KJ, Ahmad N, Alspaugh JA, Drew WL, Reller M. Sherris Medical Microbiology. 7th ed. New York: McGraw Hill Education; 2014.
Talaro KP, Chess B. Foundation Microbiology. 10th ed. New York: McGraw-Hill Education; 2018.
Centers for Disease Control and Prevention. Pseudomonas aeruginosa in Healthcare Settings [Internet]. Centers for Disease Control and Prevention; 2019 [cited 29 April 2021]. Available from: https://www.cdc.gov/hai/organisms/pseudomonas.html
Guggenbichler JP, Assadian O, Boeswald M, Kramer A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials - catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. 2011;6(1). doi: 10.3205/dgkh000175
Ramos GP, Rocha JL, Tuon FF. Seasonal humidity may influence Pseudomonas aeruginosa hospital-acquired infection rates. Int J Infect Dis. 2013;17(9):e757-e761. doi: 10.1016/j.ijid.2013.03.002
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-1301. doi: 10.1017/ice.2016.174.
Centers for Disease Control and Prevention. Gram-negative Bacteria Infections in Healthcare Settings [Internet]. Centers for Disease Control and Prevention; 2013. [cited 29 April 2021]. Available from: https://www.cdc.gov/hai/organisms/gram-negative-bacteria.html
Ribeiro ÁCDS, Crozatti MTL, Silva AAD, Macedo RS, Machado AMO, Silva ATA. Pseudomonas aeruginosa in the ICU: prevalence, resistance profile, and antimicrobial consumption. Rev Soc Bras Med Trop. 2019;53:e20180498. oi: 10.1590/0037-8682-0498-2018.
RSUP Sanglah. Pola Kepekaan Mikroorganisme RSUP Sanglah Periode Juli-Desember 2020: Pola Kepekaan Mi kroorganisme Ruang ICU dan HCU RSUP Sanglah Denpasar Juli - Desember 2020. Denpasar: RSUP Sanglah; 2020.
Dharmayanti IGAM, Sukrama IDM, Karakteristik Bakteri Pseudomonas aeruginosa dan Pola Kepekaannya terhadap Bakteri di Intensive Care Unit (ICU) RSUP Sanglah Pada Bulan November 2014 – Januari 2015. E-jurnal Medika. 2019;8(4). ISSN 2303-1395. Available at: <https://ojs.unud.ac.id/index.php/eum/article/view/50011>
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI guideline M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2021.
Yusuf E, Van Herendael B, Verbrugghe W, Ieven M, Goovaerts E, Bergs K, et al. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: association with the duration of antibiotic exposure and mode of administration. Ann Intensive Care. 2017 Dec;7(1):72. doi: 10.1186/s13613-017-0296-z.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x.
Halim SV, Yulia R, Penggunaan Antibakteri Golongan Carbapenem pada Pasien Dewasa Rawat Inap Sebuah Rumah Sakit Swasta di Surabaya. Jurnal Farmasi Klinik Indonesia, Desember. 2017;6(4). doi: http://10.15416/ijcp.2017.6.4.267
Fusté E, Jiménez LL, Segura C, Gainza E, Vinuesa T, Viñas M. Carbapenem resistance mechanisms of Multidrug-resistant Pseudomonas aeruginosa. Journal Medical Microbiology. 2013 Sep;62(Pt 9):1317-1325. doi: 10.1099/jmm.0.058354-0
Deni J, Pangalila FJV. Hubungan keberhasilan terapi pneumonia nosokomial resistan Pseudomonas aeruginosa dan Acinetobacter baumannii dengan dosis Karbapenem di ICU RS Royal Taruma periode 2012-2017. Tarumanagara Medical Journal. 2019;2(1): 65-76. doi: http://dx.doi.org/10.24912/tmj.v2i1.5865
Garcia LS (ed). Clinical microbiology procedures handbook, 3rd Edition [Internet]. American Society for Microbiology Press; 2010.
RSUP Sanglah. Formularium Edisi XIII Rumah Sakit Umum Pusat Sanglah Tahun 2020-2021: RSUP Sanglah; 2021.
Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & cell. 2015;6(1):26- 41. doi: 10.1007/s13238-014-0100-x.
Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D, et al.. Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015. Emerg Infect Dis. 2019 Jul;25(7):1281-1288.doi: 10.3201/eid2507.181200
Zilberberg MD, Shorr AF. 2013. Secular trends in gram-negative resistance among urinary tract infection hospitalizations in the United States, 2000–2009. Infect Control Hosp Epidemiol 34:940–946. doi:10.1086/671740.
World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. World Health Organization; 2017. [cited 1 Juni 2021]. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob Agents Chemother 2016; 60:2537–41. doi: 10.1128/AAC.02252-16
Yohei D. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clinical Infectious Diseases, Volume 69. Issue Supplement_7[Internet]. 1 December 2019. Pages S565–S57. https://doi.org/10.1093/cid/ciz830
Asempa TE, Nicolau DP, Kuti JL. Carbapenem-Nonsusceptible Pseudomonas aeruginosa Isolates from Intensive Care Units in the United States: a Potential Role for New β-Lactam Combination Agents. J Clin Microbiol. 2019;57(8):e00535-19. doi: 10.1128/JCM.00535-19
VitkauskienÄ— A, SkrodenienÄ— E, JomantienÄ— D, Macas A, Sakalauskas R. Changes in the dependence of Pseudomonas aeruginosa O serogroup strains and their resistance to antibiotics in a university hospital during a 5-year period. Medicina (Kaunas, Lithuania). 2011;47(7):361-367. https://doi.org/10.3390/medicina47070051
Garcinuño P, Santibañez M, Gimeno L, Sánchez-Bautista A, Coy J, Sánchez-Paya J, Boix V, et al. Empirical monotherapy with meropenem or combination therapy: the microbiological point of view. Eur J Clin Microbiol Infect Dis. 2016 Nov;35(11):1851-1855. doi: 10.1007/s10096-016-2737-2.
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018 May 29;7:212527. doi: 10.7573/dic.212527
Khan F, Khan A, Kazmi SU. Prevalence and Susceptibility Pattern of Multi Drug Resistant Clinical Isolates of Pseudomonas aeruginosa in Karachi. Pak J Med Sci. 2014;30(5):951-954. doi: 10.12669/pjms.305.5400
Anggraini D, Yulindra UG, Savira M, Djojosugito FA, Hidayat N. Prevalensi dan Pola Sensitivitas Antimikroba Multidrug Resistant Pseudomonas aeruginosa di RSUD Arifin Achmad. Majalah Kedokteran Bandung. 2018; 5(1), 6-12. DOI: https://doi.org/10.15395/mkb.v50n1.1150
Copyright (c) 2021 Indonesian Journal of Tropical and Infectious Disease
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indonesian Journal of Tropical and Infectious Disease (IJTID) is a scientific peer-reviewed journal freely available to be accessed, downloaded, and used for research. All articles published in the IJTID are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which is under the following terms:
Attribution ” You must give appropriate credit, link to the license, and indicate if changes were made. You may do so reasonably, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.