Molecular Diagnostic Tools for Treponema pallidum
Downloads
Syphilis, a common sexually transmitted disease, is caused by Treponema pallidum subsp. pallidum. Owing to the chameleonic behavior of syphilis, ocular involvement still presents a therapeutic problem. Direct detection of Treponema pallidum in the vitreous offers a potential diagnostic method because serodiagnosis has considerable limitations. The worldwide identification of T. pallidum substypes has occurred since the advent of molecular typing approaches. The purpose of this article is to provide more information on the development of a molecular approach for Treponema pallidum detection. A body of literature was gathered using automated database searches in Google Scholar, PubMed, and ScienceDirect. Although prior studies have focused on other genes, such as polA, 16S RNA, and the whole genome, there are still some that use the study of the arp and T. pallidum repeat (tpr) genes to subtype. Whole blood, vaginal ulcers, skin biopsies, and other samples can be used in molecular methods. Comparing quantitative reverse trascription-polymerase chain reaction (qRT-PCR) to traditional methods, such as reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody (IFA) assay, and virus isolation, qRT-PCR has the advantage of being faster and more sensitive. Quick molecular methods, particularly polymerase chain reaction (PCR) results, will enable early detection of primary, secondary, and latent syphilis, which will lead to prompt treatment and prevention of disease progression as well as a reduction in the amount of time that the patient's sexual partners are exposed to the illness.
Gerbase AC, Rowley JT, Heymann DH, Berkley SF, Piot P. Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect. 1998 Jun;74 Suppl 1:S12-6
Wijesooriya NS, Rochat RW, Kamb ML, Turlapati P, Temmerman M, Broutet N, Newman LM. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modelling study. Lancet Glob Health. 2016 Aug;4(8):e525-33
Kusumawaty M, Djawad K, Massi MN, Adam AM, Wahab S, Bahar B. Sero-epidemiology and risk factors of syphilis in Makassar, Indonesia. Serbian J Dermatology Venereol. 2019;11(2):43-49
Burstain JM, Grimprel E, Lukehart SA, Norgard MV, Radolf JD. Sensitive detection of Treponema pallidum by using the polymerase chain reaction. ASM. 1991;29(1):62-69
Tramont EC. Treponema pallidum (syphilis), in Mandell GL, Douglas RG, and Bennett JE, Priciples and practice of infectious diseases, 3rd ed. New York: John Wiley & Sons, Inc.
Strouhal M, Å majs D, MatÄ›jková P, Sodergren E, Amin AG, Howell JK, Norris SJ, Weinstock GM. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007; 75(12):5859-5866
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, Morse SA. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998; 25(8):408-14
Martin IE, Gu W, Yang Y, Tsang RSW. Macrolide resistance and molecular types of Treponema pallidum causing primary Syphilis in Shanghai, China. Clin Infect Dis. 2009;49:515-21
Buffet M, Grange PA, Gerhardt P, Carlotti A, Calvez V, Bianchi A, Dupin N. Diagnosing Treponema pallidum in secondary syphilis by PCR and Immunohistochemistry. J Invest Dermatol. 2007;127:2345-2350
Noda AA, Grilloá L, Lienhard R, Blanco O, Rodríguez, Å majs D. Bejel in Cuba: molecular identification of Treponema pallidum subsp. endemicum in patients diagnosed with veneral syphilis. Clin Microbiol Infect. 2018;24:1210.e1-1210.05
Koek AG, Bruisten SM, Dierdorp M, van Dam AP, Templeton K. Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum. Clin Microbiol Infect. 2006;12:1233-1236
Å majs D, MatÄ›jková P, Woznicová V, ValiÅ¡ová Z. Diagnosis of syphilis by polymerase chain reaction and molecular typing of Treponema pallidum. Rev Med Microbiol. 2006;17(4):93-99
Gayet-Ageron A, Sednaoui P, Lautenschlager S, Ferry T, Toutous-Trellu L, Cavassini M, Yassir F, de Tejada BM, Emonet S, Combescure C, Schrenzel J, Perneger T. Use of Treponema pallidum PCR in Testing of Ulcers for Diagnosis of Primary Syphilis. Emerg Infect Dis. 2015;21(1):127-129
Becherer L, Knauf S, Marks M, Lueert S, Frischmann S, Borst N, von Stetten F, Bieb S, Adu-Sarkodie, Y, Asiedu K, Mitjí , Bakheit M. Multiplex Mediator Displacemen Loop-Mediated Isotermal Amplification for Detection of Treponema pallidum and Haemophilus ducreyi. Emerg Infect Dis. 2020; 26(2):282-288
Zhou L, Gong R, Lu X, Zhang Y, Tang J. Development of a multiplex Real-Time PCR assay for the detection of Treponema pallidum, HCV, HIV-1, and HBV. Jpn J Infect Dis. 2015;68:481-487
Sutton MY, Liu H, Steiner B, Pillay A, Mickey T, Finelli L, Morse S, Markowitz LE, St. Louis ME. Molecular subtyping of Treponema pallidum in an Arizona Country with increasing Syphilis morbidity: Use of specimens from ulcers and blood. J Infect Dis. 2001;183:1601-6
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin Y, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA. Enhanced molecular typing of Treponema pallidum: Geographical distribution of strain types and association with Neurosyphilis. J Infect Dis. 2010;202(9):1380-1388
MatÄ›jková P, Strouhal M, Å majs D, Norris SJ, Palzkill T, Petrosino JF, Sodergren E, Norton JE, Singh J, Richmond TA, Molla MN, Albert TJ, Weinstock GM. Complate genome sequence of Treponema pallidum ssp. Pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8(76):1-12
Shields M, Guy RJ, Jeoffreys NJ, Finlayson RJ, Donovan B. A longitudinal evaluation of Treponema pallidum PCR testing in early syphilis. BMC Infect Dis. 2012;12(353):1-6
Martin IE, Tsang RSW, Sutherland K, Anderson B, Read R, Roy C, Yanow S, Fonseca K, White W, Kandola K, Kouadjo E, Singh AE. Molecular typing of Treponema pallidum strains in Western Canada: Predominance of 14d subtypes. Sex Transm Dis. 2010;37(9):544-548
Flasarová M, PospíÅ¡ilová P, Mikalová L, ValiÅ¡ová Z, Dastychová E, Strnadel R, Kuklová I, Woznicová V, Zákoucká H, Å majs D. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: All identified genotypes are related to the sequence of the SS14 strains. Act Derm Venereol. 2012;92:669-674
Grillová L, Bawa T, Mikaloá L, Gayet-Ageron A, Neiselt K, Strouhal M, Sednaoui P, Ferry T, Cavassini M, Lautenschlager S, Dutly F, Pla-Díaz M, Krützen M, González-Candelas F, Bagheri HC, Å majs D, Arora N, Bosshard PP. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PloS ONE. 2018;13(7):e0200773
PÄ›troÅ¡ová H, Zobaníková M, ÄŒejková D, Mikalová L, PospíÅ¡ilová P, Strouhal, M, Chen L, Qin X, Muzny DM, Weinstock GM, Å majs D. Whole genome sequence of Treponema pallidum ssp. Pallidum, strain Mexico A, suggests recombination between Yasws and Syphilis strains. PloS Negl Trop Dis. 2012;6(9):e1832
Casal CAD, da Silva MO, Costa IB, Araújo EC, de Oliveira Corvelo TC. Molecular detection of Treponema pallidum sp. Pallidum in blood samples of VDRL-seroreactive woman with lethal pregnancy outcome: a retrosprective observational study in northern Brazil. Rev Soc Bras Med Trop. Aug 2011;44(4):1-6
LaFond RE, Centurion-Lara A, Godornes C, van Voorhis WC, Lukehart SA. TprK sequence diversity accumulates during infection of Rabbits with Treponema pallidum subsp. pallidum Nichols Strain. Infect Immun. Mar 2006;73(3):1896-1906
Salazar JC, Rathi A, Michael NL, Radolf JD, Jagodzinski LL. Assessment of kinetics of Treponema pallidum dissemination into blood and tissues in experimental Syphilis by Real-Time Quantitative PCR. Infect Immun. June 2007;75(6):2954-2958
LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, van Voorhis WC, Lukehart SA. Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol. Nov 2003;185(21):6262-6268
Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. May 2001;39(5):1941-1946
Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm W, Morse SA. Molecular typing of Treponema pallidum in South Africa: Cross-sectional studies. J Clin Microbiol. Jan 2002;40(1): 256-258
Grange PA, Gressler L, Dion PL, Farhi D, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Pantoja C, Blanchi A, Lassau F, Avril MF, Janier M, Dupin N. Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol. March 2012;50(3):546-552
Heymans R, van der Helm JJ, de Vries HJC, Fennema HSA, Coutinho RA, Bruisten SM. Clinical value of Treponema pallidum Real-Time PCR for diagnosis of syphilis. J Clin Microbiol. Feb 2010;48(2):497-502
Marfin AA, Liu H, Sutton MY, Steiner B, Pillay A, Markowitz LE. Amplification of the DNA polymerase I gene of Treponema pallidum from whole blood of persons with syphilis. Diagn Microbiol Infect Dis. 2001;40:163-16
Kusumawati D, Martodihardjo S. Syphilis in pregnancy. Berkala Ilmu Kesehatan Kulit dan Kelamin. 2013-12;25(3):199-204
Lubis YH, Susilawati S. Analysis of HIV and Syphilis transmission prevention programs for adolescents. Indonesian Journal of Health Administration. June 2023;11(1):120-130
Susilawati TN, Satria YAA. Genital tract infection during pregnancy and its association with preterm delivery. Indonesian Journal of Tropical and Infectious Disease. 2021;9(1):46-57
Purnamasari I, Hidayati AN, Kusumastuti EH, Effendy I. The histopathological features of syphilis and its mimickers. Folia Media Indonesiana. 2023;59(1):63-69
Griffith C. Surface sampling and the detection of contamination. Handbook of Hygiene Control in the Food Industry. 2016:673-696
Downey AS, Silva SMD, Olson ND, Filliben JJ, Morrow JB. Impact of processing method on recovery of bacteria from wipes used in biological surface sampling. Appl Environ Microbiol. 2012;78(16):5872-5881
Löder MG, Gerdts G. Methodology used for the detection and identification of microplastics-A critical appraisal. Marine Anthropogenic Litter. 2015:201-227
Masyeni DAPS, Hadi U, Kuntaman, Yohan B, Margyaningsih NI, Sasmono RT. Expression of four cytokine/chemokine genes in peripheral blood mononuclear cells infected with dengue virus. Indonesian Journal of Tropical and Infectious Disease. 2019;7(4):75-78
Copyright (c) 2023 Indonesian Journal of Tropical and Infectious Disease
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indonesian Journal of Tropical and Infectious Disease (IJTID) is a scientific peer-reviewed journal freely available to be accessed, downloaded, and used for research. All articles published in the IJTID are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which is under the following terms:
Attribution ” You must give appropriate credit, link to the license, and indicate if changes were made. You may do so reasonably, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.