Antibiotic-Resistant Genes and Polymorphisms of blaTEM1 gene in Multidrug-resistant Escherichia coli from Chicken Eggs and Cloacal Swabs in Sleman, Yogyakarta: The Impact on Public Health
Downloads
Antimicrobial resistance in pathogenic bacteria is a serious problem in public health. Antibiotic-resistant pathogens are the cause of many deaths. Escherichia coli (E. coli) is one of the bacteria that experienced multi-drug resistance (MDR). Infection of Escherichia coli in humans occurs through transmission of fecal-oral. This study, conducted at the Veterinary Public Health Laboratory of Gadjah Mada University, aimed to assess MDR E. coli prevalence in 200 chicken egg samples sourced from poultry farms and supermarkets, alongside 63 cloacal swab samples from broiler poultry in Sleman, Yogyakarta. The study focused on detecting resistance genes including tetA, aadA1, aph(3)IIa, and blaTEM1, also analyzing polymorphisms in the blaTEM1 gene associated with antibiotic resistance. Identification technique of E. coli positivity refers to the Indonesian National Standard (SNI) 2897:2008, then E. coli identification was performed using the Analytical Profile Index (API) Test 20E Kit. Antibiotic sensitivity was determined by the Kirby Bauer method. Detection of antibiotic resistance genes in E. coli were determine using Polymerase Chain Reaction (PCR) method. Sequencing and analysis of polymorphism and phylogenetic were performed only in blaTEM1. There were 12 samples identified as having E. coli (1 from chicken eggs and 11 from cloacal swabs), resistance percentages were highest for erythromycin (100%), ampicillin (91.7%), ciprofloxacin (91.7%), sulfamethoxazole (83.3%), streptomycin (83.3%) gentamicin (75%), tetracycline (41.7%), and chloramphenicol (25%). respectively. All of 12 E. coli samples were bacteria with MDR. Resistant genes were prevalent, notably blaTEM1 and aadA1 (100% each), with aph(3)IIa and tetA genes also detected in 58.3% of samples each. Sequencing of the blaTEM1 gene revealed polymorphisms in isolate A8. However, these did not alter its antibiotic resistance phenotype. Sequences of E. coli isolates showed similarities to strains from Vietnam, China, and India, countries with high antibiotic consumption, particularly ampicillin.
Mulchandani R., Wang Y., Gilbert M., Van Boeckel T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health. 2023. 3(2): 1-11.
Ansari, S., Nepal H.P., Gautam R., Shrestha S., Neopane P., Gurung G., and Cjapagain M.L. Community acquired multi-drug resistant clinical isolates of Escherichia coli in a tertiary care center of Nepal. Antimicrobial Resistance & Infection Control. 2015. 4:15.
Zhou Y., Zhou Z., Zheng L., Gong Z., Li Y., Jin Y., Huang Y., and Chi M. Urinary Tract Infection and Treatment Options. International Journal of Molecular Sciences. 2023. 24. 1 – 33.
Hanifa, D. N. C. Rasionalitas Penggunaan Antibiotik Pada Pasien Rawat Jalan Di Puskesmas Loa Janan Tahun 2020. Borneo Student Research (BSR). 2021. 3(1): 1002–1010.
Djaja, I. M., Puteri, A. R., & Wispriyono, B. Escherichia coli’s contaminated food from Faculty Canteen in University X, Jakarta. Journal of Pure and Applied Microbiology. 2018. 12(2): 223–227.
Daneshmand, T.N., Friedrich M.N.D., Gachter M., Montealerge M.C., Nhiwatiwa T., Mosler H.J., and Julian T.R. Escherichia coli Contamination across Multiple Environmental Compartments (Soil, Hands, Drinking Water, and Handwashing Water) in Urban Harare: Correlations and Risk Factors. Amrican Journal of Tropical Medicine and Hygiene. 2018. 17-0521. 803 - 813.
Wardhana, D. K., Safitri D.A., Annisa S., Harijani N., Estoepangestie A.T.S., Maghfiroh L. Prevalence of Extended-Spectrum Beta-Lactamases in producing Escherichia coli in beef sold in traditional markets in Surabaya, Indonesia. Biodiversitas. 2021. 22(5). pp. 2789–2793. doi: 10.13057/biodiv/d220542.
Qiu, X., Zhou, G. , and Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. Journal of Hazardous Materials. 2022. p. 126883.
Kementerian Pertanian. Outlook Komoditas Peternakan Telur Ayam Ras Petelur. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal. 2021. ISSN 1907 – 1507.
Lee, M., Seo D.J., Jeon S.B., Ok H.E., Jung H., Choi C., dan Chun H.Y. Detection of foodborne pathogens and mycotoxins in eggs and chicken feeds from farms to retail markets. Korean Journal for Food Science of Animal Resources. 2016. 36(4) : 463–468.
Wellner S.M., Alobaidallah M.S.A., Fei X., Herrero-Fresno A., Olsen J.E. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Sci Rep. 2024.14(1):4163.
Pengujian Cemaran Mikroba dalam Daging, Telur, dan Susu, serta Hasil Olahannya. 2008. Bogor: Bandar Standardisasi Indonesia.
Kallau, N. H. G., Wibawan I.W.T., Lukman D.W., Sudarwanto M.B. Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. Journal of Advanced Veterinary and Animal Research. 2018. 5(4): 388–396.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing 31st Edition. West Valley Road. USA. 2021. 1 – 352.
Mthembu T.P., Zishiri O.T., El Zowalaty M.E. Molecular Detection of Multidrug-Resistant Salmonella Isolated from Livestock Production Systems in South Africa. Infect Drug Resist. 2019. 12: 3537 – 3548.
Qiagen. Qiamp® DNA Mini and Blood Mini Handbook. USA. 2016. 1 -72.
Adeyanju, G.T. and Ishola, O. Salmonella and Escherichia coli contamination of poultry meat from a processing plant and retail markets in Ibadan, Oyo State, Nigeria. SpringerPlus. 2014. 3(1): 139.
Algammal A.M., El-Tarabili R.M., Abd El-Ghany W.A., Almanzalawi E.A., Alqahtani T.M., Ghabban H., Al-Otaibi A.S., Alatfeehy N.M., Abosleima N.M., Hetta H.F., Badawy G.A. Resistance profiles, virulence and antimicrobial resistance genes of XDR S. Enteritidis and S. Typhimurium. AMB Express. 2023.13(1):110.
Adesiji, Y. O., Deekshit, V. K. and Karunasagar, I. . Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Science & Nutrition. 2014. 2(4): 436–442.
Islam, M. S., Sobur M.A., Rahman S., Ballah F.M., Levy S., Siddique M.P., Rahman M., Kafi M.A., Rahman M.T. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microbial Ecology. 2022. 83(4): 942–950.
Karlowsky, J. A., Lob S.H., DeRyke C.A., Siddiqui F., Young K., Motyl M.R., Sahm D.F. Prevalence of ESBL non-CRE Escherichia coli and Klebsiella pneumoniae among clinical isolates collected by the SMART global surveillance program from 2015 to 2019. International Journal of Antimicrobial Agents. 2022. 59(3): 106535.
Kahlmeter G. EUCAST proposes to change the definition and usefulness of the susceptibility category ‘Intermediate’. Clinical Microbiology and Infection. 2017. 23(12): 894 – 895.
Jian Z., Zeng L., Xu T., Sun S., Yan S., Yang L., Huang Y., Jia J., Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology. 2021. 61: 1049 - 1070.
Wu, D., Ding Y., Yao K., Gao W., Wang Y. Antimicrobial Resistance Analysis of Clinical Escherichia coli Isolates in Neonatal Ward. Frontiers in Pediatrics. 2021. 9(1): 1–7
Laxminarayan R. dan Chaudhury R.R. Antibiotic Resistance in India: Opportunities for Action. PLoS Med. 2016. 13(3): 1 – 7.
Rahman, Md Masudur., Husna A., Elshabrawy H.A., Alam J., Runa N.Y.,Badruzzaman A.T.M., Banu N.A., Al Mamun M., Paul B., Das S., Rahman Md.M., Mahbub-E-Elahi A.T.M. Khairalla A.S., dan Ashour H.M. Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat. Scientific Reports. 2020. 10(1). pp. 1–11.
Kiiti, R. W., Komba E.V., Msoffe P.L., Mshana S.E., Rweyemamu M., dan Matte M.I.N. Antimicrobial Resistance Profiles of Escherichia coli Isolated from Broiler and Layer Chickens in Arusha and Mwanza, Tanzania. International Journal of Microbiology. 2021. doi: 10.1155/2021/6759046.
Neyestani Z., Khademi F., Teimourpour R., Amani M., and Arzanlou M. Prevalence and mechanisms of ciprofloxacin resistance in Escherichia coli isolated from hospitalized patients, healthy carriers, and wastewaters in Iran. BMC Microbiol. 2023. 23(1):191 – 202.
Datok, D. W., Ishaleku D., Tsaku P.A., Agya E.O., dan Adoga M.P. Multidrug resistance to commonly prescribed antibiotics in escherichia coli isolated from barbecued beef (Suya) sold in a Nigerian city. Pan African Medical Journal. 2021. 39. doi: 10.11604/pamj.2021.39.50.25502.
Ramírez-Castillo, F. Y., Flores A.C.M., Gonzalez F.J.A., Diaz F.M., Harel J., dan Barrera A.L.G. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Annals of Clinical Microbiology and Antimicrobials. 2018. 17(1): 1–13.
Holloway K. Antibiotic use in South East Asia and policies to promote appropriate use: reports from country situational analyses. BMJ. 2017. 358:j2291.
Sholih, M. G., Muhtadi, A. dan Saidah, S. Rasionalitas Penggunaan Antibiotik di Salah Satu Rumah Sakit Umum di Bandung Tahun 2010. 2015. Indonesian Journal of Clinical Pharmacy. 4(1): 64–70.
Nguyen N.V., Do N.T.T., Nguyen C.T.K., Tran T.K., Ho P.D., Nguyen H.H., Vu H.T.L., Wertheim H.F.L., Van Doorn H.R., dan Lewycka S. Community-level consumption of antibiotics according to the AWaRe (Access, Watch, Reserve) classification in rural Vietnam. JAC Antimicrob Res. 2020. 1(1): 1-8.
Song Y., Han Z., Song K., dan Zhen T.. Antibiotic Consumption Trends in China: Evidence From Six-Year Surveillance Sales Records in Shandong Province. Front. Pharmacol. 2020. 11:491.
Limato, R., Lazarus G., Dernison P., Mudia M., Alamanda M., Nelwan E.J., Sinto R., Karuniawati A. Lancet Reg Health. 2022. 2(1): 1 – 23.
Abreu R., Lemsaddek T.S., Cunha E., Tavares L., and Oliveira M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms. 2023. 11(4): 1 -35.
Qian J., Wu Z., Zhu Y., Liu C. One Health: a holistic approach for food safety in livestock. Science in One Health. 2022. 1(1) : 1 – 10.
Scicchitano D., Babbi G., Palladino G., Turroni S., Mekonnen Y.T., Laczny C., Wilmes P., Leekitcharoenphon P., Castagnetti A., D’Amico F., Brigidi P., Savojardo C., Manfreda G., Martelli P., De Cesare A., Aarestrup M.C., and Rampelli S. Routes of dispersion of antibiotic resistance genes from the poultry farm system. Sci Total Environ. 2024. 1(1) : 1 – 12.
Islam, M. S., Sobur M.A., Rahman S., Ballah F.M., Levy S., Siddique M.P., Rahman M., Kafi M.A., Rahman M.T. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microb Ecol. 2022. 83(4): 942–950.
Zhao, X., Yang J., Ju Z., Chang W., dan Sun S. Molecular Characterization of Antimicrobial Resistance in Escherichia coli from Rabbit Farms in Tai’an, China. BioMed Res Int. 2018. 1(1). doi: 10.1155/2018/8607647.
Deku, J. G., Duedu K.O., Ativi E., Kpene G.E., dan Feglo P.K. Occurrence and distribution of extended-spectrum β-lactamase in clinical Escherichia coli isolates at Ho Teaching Hospital in Ghana. Ghana Med J. 2021. 55(4): 298–307.
Aworh, M. K., Kwaga J.K.P, Hendriksen R.S., Okolocha E.C., dan Siddhartha Thakur. Genetic relatedness of multidrug- resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrob Res Infect Control. 2021.10(1) : 1–13
Mecik M., Hubeny M.B., Paukszto L., Mazdiarz M., Wolak I., Harnisz M., and Korzeniewska E. Poultry manure-derived microorganism as a revoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. J Environ Manag. 2023. 348 (2023) 119303.
Qiu, X., Zhou, G. dan Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J Hazard Mater. 2022. p. 126883
Ramírez-Bayard, I. E. Mejia F., Medina-Sanchez J.R., Cornejo-Reyes H., Castillo M., Querol-Audi J., Martinez-Torres A.O. Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antibiotics. 2023. 12(2): 280.
Wang, J., Stephan R., Zurfluh K., Hachler H., dan Fanning S. Characterization of the genetic environment of blaESBL genes, integrons and toxin-antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Frontiers in Microbiology. 2015. 5(1). pp. 1–8.
Poirel L., Madec J.Y., Lupo A., Schink A.K., Kieffer N., Nordmann P., and Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiol Spectrum. 2017. 6(4) : ARBA-0026-2017.
Von Wintersdorff, C. J. H., Penders J., van Niekerk J.M., Mils N.D., Majumder S., van Alphen L.B., Savelkoul P.H.M., dan Wolffs P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology. 2016. 7(1): 1–10.
Bortone, B., Jackson C., Hsia Y., Bielicki J., Magrini N., and Sharland M. High global consumption of potentially inappropriate fixed dose combination antibiotics: Analysis of data from 75 countries. PLOS ONE. 2020. 16(1): 1 – 11.
Mulchandani R., Wang Y., Gilbert M., Van Boeckel T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health. 2023. 3(2): 1-11.
Bahr, G., González L.J., Vila A.J. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev. 2021 .121(13):7957-8094.
Skalweit MJ, Li M, Taracila MA. Effect of asparagine substitutions in the YXN loop of a class C β-lactamase of Acinetobacter baumannii on substrate and inhibitor kinetics. Antimicrob Agents Chemother. 2015. 59(3): 1472-1477.
Judge, A., Hu, L., Sankaran, B. et al. Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M β-lactamase. Commun Biol.2023.6(35): 1 – 11.
Copyright (c) 2024 Indonesian Journal of Tropical and Infectious Disease
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indonesian Journal of Tropical and Infectious Disease (IJTID) is a scientific peer-reviewed journal freely available to be accessed, downloaded, and used for research. All articles published in the IJTID are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which is under the following terms:
Attribution ” You must give appropriate credit, link to the license, and indicate if changes were made. You may do so reasonably, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.