Che Puteh Osman, Nor Hadiani Ismail

= http://dx.doi.org/10.20473/ijtid.v6i6.6642
Abstract views = 814 times | downloads = 337 times


Rennellia elliptica, popularly dubbed as Malaysian Ginseng, is widely used in traditional medicine among the local Jakun community in Endau-Rompin State Park, Pahang, Malaysia. The decoction of the roots is traditionally taken for treatment of body aches, as postpartum tonic, as aphrodisiac and for the treatment of jaundice. In the effort of searching new botanical drugs and drug candidates from tropical rainforest, the team from this laboratory had conducted a sizeable phytochemical and biological screening program of tropical plant at Endau Rompin State Park, Pahang with the help from the indigenous people. R. elliptica showed strong antiplasmodial activity in vitro with the IC50 value of 4.04µg/mL. The comprehensive study on the root extract of R. elliptica in this laboratory yielded seventeen compounds from four different classes, including 2 new pyranoanthraquinones, one new anthraquinone, eleven known anthraquinones, one lactone triterpenoid, one coumarin and one phenolic acid. The chemical profile of the root extract was established using HPLC and the selected marker compounds were used as external standards and quantified using standard calibration curve. Nordamnacanthal 5, damnacanthal 7, 2-formyl-3-hydroxy-9,10-anthraquinone 6, 2-methyl-3-hydroxy-9,10-anthraquinone 11 and 1,2-dimethoxy-6-methyl-9,10-anthraquinone 3 were determined at 3.57, 10.32, 4.47, 12.18 and 4.09 µg/g, respectively. Owing to the toxicity of dichloromethane, the extraction of the desired marker compounds was attempted using accelerated solvent extraction and soxhlet extraction using ethanol and water at different compositions. R. elliptica root extract and the isolated anthraquinones showed potential antiplasmodial activity, and the active compounds were probed for their mode of action. In addition, the dichloromethane root extract of R. elliptica and the selected anthraquinones were screened for anticancer, antioxidant, and α-glucosidase inhibitory activities as well as toxicity study in vitro.  The review summarizes the findings on Rennellia elliptica which includes phytochemistry, toxicity and its biological activities. The chemotaxonomic significance of Rennellia elliptica is also discussed


Rennellia elliptica; anthraquinone; Rubiaceae; malaria; antiplasmodial

Full Text:



Abd Aziz R. Siri Syarahan Perdana Professor. Skudai: Universiti Teknologi Malaysia; 2003. 27 p.

Burkill IH. A Dictionary of the Economics of the Malay Peninsular. Kuala Lumpur: Ministry of Agriculture; 1935.

Kong J-M, Goh N-K, Chia T-F. Recent Advances in Traditional Plant Drugs and Orchids. Acta Pharmacologica Sinica. 2003;24(1):17-21.

Wong KM. Rubiaceae (from the genus Rubia). In: Ng FSP, editor. Tree Flora of Malaya; A Manual for Foresters. 4: Longman Malaysia; 1989. p. 324-37, 404-5.

Ismail I, Linatoc AC, Mohamed M, Tokiman L. Documentation of Medicinal Plants Traditionally Used by the Jakun People of Endau-Rompin (PETA) for Treatments of Malaria-Like Symptoms. Jurnal Teknologi. 2015;77(31):63-9.

Yusoff NI, Latip J, Liew HL, Latiff A. Kajian Fitokimia Awal Tumbuhan Taman Negeri Endau Rompin, Pahang: Antrakuinon daripada Akar Rennellia elliptica Korth. (Rubiaceae). In: Mohamad Ismail S, Mat Isa M, W. Ahmad WY, Ramli MR, Latiff A, editors. Taman Endau Rompin: Pengurusan Persekitaran Fizikal dan Biologi. Siri Kepelbagaian Biologi Hutan: Jabatan Perhutanan Semenanjung Malaysia; 2004.

Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM. Anthraquinones with Antiplasmodial Activity from the Roots of Rennellia elliptica Korth. (Rubiaceae). Molecules. 2010;15(10):7218-26.

Jalaluddin S, Bruhl JJ. Testng Species Limits in Rennellia (Prismatomerideae, Rubiodeae, Rubiaceae). Taxon. 2008;57(1):43-52.

Suratman. The Indonesian Species of Rennellia Korth. (Rubiaceae). Biodiversitas. 2008;9(4):259-63.

Osman CP, Ismail NH, Wibowo A, Ahmad R. Two new pyranoanthraquinones from the root of Rennellia elliptica Korth. (Rubiaceae). Phytochemistry Letters. 2016;16:225-9.

Pereda-Miranda R, Gascón-Figueroa M. Chemistry of Hyptis mutabilis: New Pentacyclic Triterpenoids. Journal of Natural Products. 1988;51(5):996-8.

Katai M, Terai T, Meguri H. Triterpenoids of the bark of Pieris japonica D. Don (Japanese name: asebi). II. 13C Nuclear magnetic resonance of the .GAMMA.-lactones of ursane- and oleanane-type triterpenes. Pharmaceutical Bulletin. 1983;31(5):1567-71.

Imai F, Itoh K, Kishibuchi N, Kinoshita T, Sankawa U. Constituents of the root bark of Murraya paniculata collected in Indonesia. Chem Pharm Bull. 1989;37(1):119-23.

M.G.Al-Hazimi H, Miana GA, Deep MSH. Terpenoids from Salvia lanigera. Phytochemistry. 1987;26(4):1091-3.

Jamal JA. Malay Traditional Medicine; An Overview of Scientific and Technological Progress. TECH Monitor. 2006:37-49.

Rodríguez-Meizoso I, Marin FR, Herrero M, Señorans FJ, Reglero G, Cifuentes A, et al. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. Journal of Pharmaceutical and Biomedical Analysis. 2006;41(5):1560-5.

Ju ZY, Howard LR. Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin. Journal of Agricultural and Food Chemistry. 2003;51(18):5207-13.

Kohler I, Jenett-Siems K, Siems K, Hernandez MA, Ibarra RA, Berendsohn WG, et al. In Vitro Antiplasmodial Investigation of Medicinal Plants from El Savador. Z Naturforsch. 2002;57c:277-8.

Egan TJ. Haemozoin (malaria pigment): a unique crystalline drug target. TARGETS. 2003;2(3):115-24.

Sullivan DJ. Theories on malarial pigment formation and quinoline action. International Journal for Parasitology. 2002;32(13):1645-53.

Cowman AF, Foote SJ. Chemotherapy and drug resistance in malaria. International Journal for Parasitology. 1990;20(4):503-13.

Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (b-hematin) formation: A mechanistic update. Life Sciences. 2007;80(9):813-28.

Rathore D, Jani D, Nagarkatti R, Kumar S. Heme detoxification and antimalarial drugs - Known mechanisms and future prospects. Drug Discovery Today: Therapeutic Strategies. 2006;3(2):153-8.

Egan TJ, Chen JY-J, de Villiers KA, Mabotha TE, Naidoo KJ, Ncokazi KK, et al. Haemozoin (beta-haematin) Biomineralization Occurs by Self-assembly Near the Lipid/Water Interface. FEBS Letters. 2006;580:5105-10.

Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicology Letters. 2005;157(3):175-88.

Olliaro PL, Yuthavong Y. An Overview of Chemotherapeutic Targets for Antimalarial Drug Discovery. Pharmacology & Therapeutics. 1999;81(2):91-110.

Beretta GL, Zunino F. Molecular Mechanisms of Anthracycline Activity. In: Krohn K, editor. Anthracycline Chemistry and Biology II. 283. Heildelberg: Springer; 2007. p. 1-20.

Lai J-M, Chang JT, Wen C-L, Hsu S-L. Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. European Journal of Pharmacology. 2009;623(1-3):1-9.

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1-40.

Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications. 2005;338(1):668-76.

Berg D. Redox Imbalace: In the Triad Genetic Disturbances and Mitochondrial Dysfunction in Parkinson's Diease. In: Qureshi A, Parvez SH, editors. Oxidative Stress and Neurodegenerative Disorders. Amsterdam: Elsevier; 2007. p. 183-200.

Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al. Nordamnacanthal potentiates the cytotoxic effects of tamoxifen in human breast cancer cells. Oncology letters. 2015;9(1):335-40.

Aziz MYA, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells. Oncology letters. 2014;7(5):1479-84.

Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82(1):34-7.

Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for Testing Antioxidant Activity. Analyst. 2001;127:183-98.

Osman CP, Ismail NH, Ahmad R, Widyawaruyanti A, Tumewu L, Choo CY, et al. Evaluation of rennellia elliptica as potential antiplasmodial herbal remedy. Jurnal Teknologi. 2017;79(6):37-43.

Jasril, Lajis NH, Lim YM, Abdullah MA, Sukari MA, Ali AM. Antitumor Promoting and Antioxidant Activities of Anthraquinones Isolated from the Cell Suspension Culture of Morinda elliptica. Asia Pacific Journal of Molecular Biology and Biotechnology. 2003;11(1):3-7.

Ismail NH, Mohamad H, Mohidin A, Lajis NH. Antioxidant Activity of Anthraquinones from Morinda elliptica. Natural Product Science. 2002;8(2):48-51.

Habsah M, Amran M, Mackeen MM, Lajis NH, Kikuzaki H, Nakatani N, et al. Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. Journal of Ethnopharmacology. 2000;72(3):403-10.

Pourmorad F, Hosseini SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology. 2006;5(11).

Mohamad H, Abas F, Permana D, Lajis NH, Ali AM, Sukari MA, et al. DPPH Free Radical Scavenger Components from the Fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae). Z Naturforsch. 2004;59c:811-5.

Molyneux P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin Journal Science Technology. 2003;26(2):211-9.

Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chemistry. 2009;113(4):1202-5.

Ordoudi SA, Tsimidou MZ, Vafiadis AP, Bakalbassis EG. Structure DPPH Scavenging Activity Relationships:Parallel Study of Catechol and Guaiacol Acid Derivatives. Journal of Agricultural and Food Chemistry. 2006;54(16):5763-8.

Demirezer LÖ, Kuruüzüm-Uz A, Bergere I, Schiewe HJ, Zeeck A. The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry. 2001;58(8):1213-7.

Bisby F, Roskov Y, Orrell T, Nicolson D, Paglinawan L, Bailly N, et al. Species 2000 & ITIS Catalogue of Life: 2008 Annual Checklist Reading,UK2008 [cited 2000. Available from: www.catalogueoflife.org/annual-checklist/2008/.

Handerson MR. Malayan Wild Flowers Dicotyledons: The Malayan Nature Society 1974.

Bremer B, Manen J-F. Phylogeny and Classification of the Subfamily Rubioideae (Rubiaceae). Plant Systematics and Evolution. 2000;225:43-72.

Jansen S, Lens F, Ntore S, Piesschaert F, Robbrecht E, Smets E. Contributions to the Wood Anatomy of the Rubioideae (Rubiaceae). Journal of Plant Research. 2001;114(3):269-89.

Do QV, Pharm GD, Mai NT, Phan TPP, Nguyen HN, Yea YY, et al. Cytoxicity of Some Anthraquinones from the Stem of Morinda citrifolia Growing in Vietnam. Tap Chi Hoa Hoc. 1999;37:94-7.

Ismail NH, Ali AM, Aimi N, Kitajima M, Takayama H, Lajis NH. Anthraquinones from Morinda elliptica. Phytochemistry. 1997;45(8):1723-5.

Rath G, Ndonzao M, Hostettmann K. Antifungal Anthraquinones from Morinda lucida. International Journal of Pharmacognosy. 1995;33:107-14.

Xiang W, Song Q-S, Zhang H-J, Guo S-P. Antimicrobial anthraquinones from Morinda angustifolia. Fitoterapia. 2008;79(7-8):501-4.

Feng ZM, Jiang JS, Wang YH, Zhang PC. Anthraquinones from the Roots of Primatomeris tetranda. Chemical & Pharmaceutical Bulletin. 2005;53(10):1330-2.

Hao J, Feng S-X, Qiu S-X, Chen T. Anthraquinone Glycosides from the Roots of Prismatomeris connata. Chinese Journal of Natural Medicines. 2011;9(1):42-5.

Kanokmedhakul K, Kanokmedhakul S, Phatchana R. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans. Journal of Ethnopharmacology. 2005;100:284-8.

Krohn K, Gehle D, Dey SK, Nahar N, Mosihuzzaman M, Sultana N, et al. Prismatomerin, a New Iridoid from Prismatomeris tetrandra. Structure Elucidation, Determination of Absolute Configuration, and Cytotoxicity. Journal of Natural Products. 2007;70:1339-43.

Han Y-S, der Heiden RV, Verpoorte R. Biosynthesis of Anthraquinones in Cell Cultures of the Rubiaceae. Plant Cell, Tissue and Organ Culture. 2001;67:201-20.


  • There are currently no refbacks.

Copyright (c) 2017 Indonesian Journal of Tropical and Infectious Disease

View My Stats

IJTID Indexed by : 


IJTID (pISSN 2085-1103eISSN 2356-0991is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Institute of Tropical Disease - Airlangga University
Gedung Lembaga Penyakit Tropis Lt.1, Kampus C Universitas Airlangga
Jln. Mulyorejo Surabaya 60115, Indonesia
E-mail: ijtid@itd.unair.ac.id