Pengaruh Nutrisi pada Produksi dan Karakterisasi Protease dari Bakteri Termofilik Isolat LS-1 Lumpur Sidoarjo

Achmad Toto Poernomo, Isnaeni Isnaeni, Djoko Agus, Ayu Chandra Dewi, Digdo Suryagama

= http://dx.doi.org/10.20473/jfiki.v4i22017.51-58
Abstract views = 381 times | downloads = 1688 times

Abstract


Pendahuluan: Telah dilakukan produksi protease dari bakteri termofilik isolat LS-1 yang dikulturkan dalam media cair mengandung natrium sitrat. Tujuan: Penelitian ini bertujuan untuk mendapatkan kondisi optimum produksi protease pada isolat bakteri termofilik lumpur Sidoarjo. Metode: Produksi protease dilakukan pada berbagai waktu, sumber karbon dan nitrogen. Karakterisasi protease dilakukan dengan menggunakan substrat azokasein dengan pengaruh berbagai suhu, pH dan pengaruh ion logam. Hasil:  Produk enzim mencapai maksimum pada 10 jam dengan aktivitas 1,85U/mg protein. Beberapa sumber karbon yang dibutuhkan untuk produksi protease dalam penelitian ini telah dioptimasi. Amilum adalah substrat terbaik, diikuti oleh natrium sitrat, asam sitrat dan sukrosa. Di antara berbagai sumber nitrogen organik dan anorganik NH4NO3 telah diketahui yang terbaik. Studi karakterisasi protease yang diperoleh dalam penelitian ini menunjukkan suhu optimum pada 60ºC. Enzim stabil selama 2 jam pada suhu 30ºC, sementara pada suhu 40ºC dan 80ºC, menurun masing masing 16% dan 86% dari aktivitas awal. Pencapaian pH optimum enzim diketahui 8,0. Setelah larutan enzim kasar dinkubasi selama 24 jam pada pH 5,5, 8,0 dan 9,0, terjadi penurunan sekitar masing-masing 49%, 15% dan 63% dari aktivitas sebelumnya. Pengaruh K+, Hg2+ dan Cu2+ pada konsentrasi 1mM sebagai inhibitor kuat sehingga mengakibatkan hilangnya aktivitas. Ion yang berkontribusi mempengaruhi aktivitas adalah Mn2+ dan Ca2+, yang menunjukkan bahwa ion ini memiliki peran fungsional dalam struktur molekul enzim. Kesimpulan: Produksi protease optimum oleh bakteri termofilik isolat LS-1 pada waktu      10 jam. Amilum  adalah substrat terbaik untuk produksi protease. Suhu dan temperatur optimum aktivitas protease masing masing pada suhu 60ºC dan pH 8,0. Aktivitas Protease dipengaruhi oleh ion logam Mn2+ dan Ca2+.


Keywords


protease, bakteri termofilik, pengaruh nutrisi

Full Text:

PDF

References


Abou-Elela, G. M., Ibrahim, H. A. H., Hassan, S. W., Abd-Elnaby, H. & El-Toukhy, N. M. K. (2011). Alkaline Protease Production by Alkaliphilic Marine Bacteria Isolated from Marsa-Matrouh (Egypt) with Special Emphasis on Bacillus cereus Purified Protease. African Journal of Biotechnology; 10; 4631–4642.

Adinarayana, K., Poluri, E. & Davuluri, S. (2003). Purification and Partial Characterization of ThermostablecSerine Alkaline Protease from a Newly Isolated Bacillus subtilis PE-11. Journal of The American Association of Pharmaceutical Scientists; 4; 1–9.

Beg, Q. & Gupta, R. (2003). Purification and Characterization of an Oxidation-Stable, Thiol-Dependant Serine Alkaline Protease from Bacillus mojavensis. Enzyme and Microbial Technology; 32; 294–304.

Boominadhan, Udandi, Rajendran, R., Palanivel, K., Vinayaga, S. & Manoharan, M. (2009). Optimization of Protease Enzyme Production Using Bacillus sp. Isolated from Different Wastes. International Journal of Botany and Research; 2; 83–87.

Chen, K. & Chen, Z. (2004). Heat Shock Proteinscof Thermophilic and Thermotolerant Fungi from Taiwan. Botanical Bulletin- Academia Sinica Taipei; 45; 247–257.

Ferrero, M. A., Castro, C. M., Abate, M. D., Baigori & Siñeriz, F. (1996). Thermostable Alkaline Proteases of Bacillus licheniformis MIR 29: Isolation, Production and Characterization. Applied Microbiology and Biotechnology; 45; 327–332.

Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L. & Nasri, M. (2005). Production and Purification of a Calcium-Dependent Protease from Bacillus cereus BG1. Journal of Industrial Microbiology and Biotechnology; 32; 186–194.

Guangrong, H., Tiejing, Y., Po, H. & Jiaxing, J. (2006). Purification and Characterization of a Protease from Thermophilic Bacillus Strain HS08. African Journal of Biotechnology; 5; 2433–2438.

Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H. (2000). Cultivation and In Situ Detection of a Thermophilic Bacterium Capable of Oxidizing Propionate in Syntrophic Association with Hydrogenotrophic Methano gens in a Thermophilic Methanogenic Granular Sludge. Applied and Environmental Microbio logy; 66; 3608–3615.

Jani, S. A., Chaitanya, Chudasama, J., Deval, B. P., Parul, S. B. & Harshad, N. P. (2012). Optimization of Extracellular Protease Production from Alkali Thermo Tolerant Actinomycetes : Saccharomonospora viridis SJ-21. Bulletin of Environment, Pharmacology and Life Sciences Online; 1; 84–92.

Janssen, P. H., Peek, K. & Morgan, H. W. (1994). Effect of Culture Conditions on the Production of an Extracellular Proteinase by Thermus Sp. Rt41A. Applied Microbiology and Biotechnology; 41; 400–406.

Johnvesly, B. & Naik G. R. (2001). Studies on Production of Thermostable Alkaline Protease from Thermophilic and Alkaliphilic Bacillus sp. JB-99 in a Chemically Defined Medium. Process Biochemistry; 37; 139–144.

Maehara, Tomoko, Takayuki, H. & Akira, N. (2008). Characterization of Three Putative Lon Proteases of Thermus Thermophilus HB27 and Use of Their Defective Mutants as Hosts for Production of Heterologous Proteins. Extremophiles; 12; 285–296.

Naidu, K. S. B. & Devi, K. L. (2005). Optimization of Thermostable Alkaline Protease Production from Species of Bacillus Using Rice Bran. African Journal of Biotechnology; 4;; 724–726.

Ohtani, Naoto, Masaru, T. & Mitsuhiro, I. (2010). An Extreme Thermophile, Thermus thermophilus, Is a Polyploid Bacterium. Journal of Bacteriology; 192; 5499–5505.

Phadatare, Sangita U., Vasanti V. D. & Mandyam, C. S. (1993). High Activity Alkaline Protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme Production and Compatibility with Commercial Detergents. Enzyme and Microbial Technology; 15; 72–76.

Rahman, Raja, N. Z., Che, N. R., Kamaruzaman, A., Mahiran, B., Wan, M. Z. Y. & Abu, B. S. (1994). Applied Microbiology Biotechnology Purification and Characterization of a Heat-Stable Alkaline Protease from Bacillus stearothermophilus F1. Applied Microbiology and Biotechnology; 40; 822–827.

Shumi, W., Towhid, H. & Anwar, M. N. (2004). Proteolytic Activity of a Bacterial Isolate Bacillus fastidiosus Den Dooren de Jong. Journal of Biological Science; 4; 370–374.

Slapikoff, S., Spitzer, J. L. & Vaccaro, D. (1971). Sporulation in Bacillus brevis: Studies and Protein Turnover Protease. Journal of Bacteriology; 106; 739–44.

Sookkheo, B., Supachok, S., Suree, P. & Shui, T. C. (2000). Purification and Characterization of the Highly Thermostable Proteases from Bacillus stearothermophilus TLS33. Protein Expression and Purification; 20; 142–151.

Veerapandian, B., Ponnusami, V. & Sugumaran, K. R. (2016). Enhanced Thermo-Stability of Bacterial Alkaline Protease by Calcium Ions. Der Pharmacia Lettre; 8; 192–96.

Zacaria, J., Delamare, A. P. L., Costa, S. O. P. & Echeverrigaray, S. (2010). Diversity of Extracellular Proteases among Aeromonas Determined by Zymogram Analysis. Journal of Applied Microbiology; 109; 212–219.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA

View JFIKI Stats

                

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License