The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity

Reyhan Alvaryan Ferdynanto, Priska Evita Setia Dharmayanti, Putu Tahlia Krisna Dewi, Widyasri Prananingrum

= http://dx.doi.org/10.20473/j.djmkg.v51.i3.p114-118
Abstract views = 128 times | views = 99 times

Abstract


Background: Porosity is an important property that must be possessed by scaffold due to its role in new bone growth. Hydroxyapatite is a scaffold material with a composition resembling that of bone that can be synthesized from cockle shell (Anadara granosa). Purpose: This research aimed to determine the effects of various HA-TCP concentrations (wt%) derived from cockle shell synthesis on scaffold porosity. Methods: HA-TCP was synthesized from cockle shells using a hydrothermal method at 200o C with a 12-hour sintering process period. An XRD test was subsequently carried out to determine the composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) compounds. Eighteen scaffold samples (n=6) were then produced using a freeze dry method and divided into three groups, namely; Group 1 (K1) treated with 5% HA-TCP, Group 2 (K2) treated with 25% HA-TCP and Group 3 (K3) treated with 50% HA-TCP. Thereafter, a scaffold porosity test was conducted using liquid displacement method. Scaffold porosity was observed by means of an SEM image. A One-Way ANOVA test was subsequently performed, followed by an LSD Post-Hoc test (p <0.05). Results: The results of the XRD test showed that the percentage of HA was 51.5%, while TCP was 16.8%. The porosity of the scaffolds was within the range of 67.24% - 80.17%. The highest porosity was found in Group 1, while the lowest occurred in Group 3. There were significant differences in all groups. Conclusion: The concentration of HA-TCP derived from the synthesis of cockle shells affects the porosity of scaffold. The lower the concentration of HA-TCP, the higher the scaffold porosity.


Keywords


HA-TCP concentration; gelatin; porosity; scaffold; cockle shells

Full Text:

PDF

References


Ardhiyanto HB. Peran hidroksiapatit sebagai bone graft dalam proses penyembuhan tulang. Stomatognatic. 2011; 8(2): 118–21.

Nurmanta DA, Djoni IR, Ady J. Optimasi parameter waktu sintering pada pembuatan hidroksiapatit berpori untuk aplikasi bone filler pada kasus kanker tulang (Osteosarcoma). Thesis. Surabaya: Universitas Airlangga; 2013. p. 1-19.

Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013; 5(Suppl 1): S125-7.

Kurniawan H. Efek pemberian kombinasi PRF dengan xenograft dan alloplast terhadap jumlah osteoblas. Denta J Kedokt Gigi. 2015; 9: 1–8.

Ismawati H, Fadli A, Akbar F. Pengaruh penambahan dispersant dan waktu pengadukan pada pembuatan scaffold hidroksiapatit menggunakan sabut gambas sebagai template. Jom FTEKNIK. 2016; 3(2): 1–6.

Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011; 32(11): 2757–74.

Arrafiqie MF, Azis Y, Zultiniar Z. Sintesis hidroksiapatit dari limbah kulit kerang lokan (Geloina expansa) dengan metode hidrothermal. Jom FTEKNIK. 2016; 3: 1–8.

Warastuti Y, Abbas B. Sintesis dan karakterisasi pasta injectable bone substitute iradiasi berbasis hidroksiapatit. J Ilmiah Aplikasi Isotop dan Radiasi. 2011; 7(2): 73–82.

Rasyid A, Fadli A, Akbar F. Pembuatan trikalsium fosfat berpori menggunakan metode protein foaming-consolidation. Jom FTEKNIK. 2016; 3: 1–7.

Naini A. Potensi graft alloplast sebagai material augmentasi resorbsi ridge alveolar. In: Proccedings Book FORKINAS VI FKG UNEJ. Jember: Universitas Jember; 2016. p. 236–46.

Pratama AF. Karakteristik hidroksiapatit hasil sintesis cangkang kerang darah (Anadara granosa) menggunakan metode hydrothermal dengan variasi waktu sinterin. Thesis. Surabaya: Universitas Hang Tuah; 2017.

Ahmad I. Pemanfaatan limbah cangkang kerang darah (Anadara granosa) sebagai bahan abrasif dalam pasta gigi. J Galung Tropika. 2017; 6: 49–59.

Kartono GS, Widyastuti W, Setiawan HW. Biokompatibilitas hidroksiapatit graft dari cangkang kerang darah (Anadara granosa) terhadap kultur sel fibroblas. Denta J Kedokt Gigi. 2014; 8: 1–8.

Nanda HS. Preparation of porous scaffolds with controlled drug release for tissue engineering. Thesis. Tsukuba: University of Tsukuba; 2014.

Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol. 2011; 22(5): 661–6.

Vijayavenkataraman S, Shuo Z, Fuh J, Lu W. Design of three-dimensional scaffolds with tunable matrix stiffness for directing stem cell lineage specification: an in silico study. Bioengineering. 2017; 4(3): 1–11.

Narbat MK, Orang F, Hashtjin MS, Goudarzi A. Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran Biomed J. 2006; 10(4): 215–23.

Nazir NM, Mohamad D, Seeni Mohamed MA, Omar NS, Othman R. Biocompatibility of in house β-tricalcium phosphate ceramics with normal human osteoblast cell. J Eng Sci Technol. 2012; 7(2): 169–76.

Rose JB, Pacelli S, El Haj AJ, Dua HS, Hopkinson A, White LJ, Rose FRAJ. Gelatin-based materials in ocular tissue engineering. Materials (Basel). 2014; 7(4): 3106–35.

Kartikasari N, Yuliati A, Kriswandini IL. Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds. Dent J (Maj Ked Gigi). 2016; 49(3): 153–7.

Hoque ME, Nuge T, Yeow TK, Nordin N, Prasad RGS V. Gelatin based scaffolds for tissue engineering – a review. Polym Res J. 2014; 9: 15–32.

Kurniawan SB, Ady J, Djoni IR. Sintesis dan karakterisasi mekanik mortar berbasis material komposit silika amorf dengan variasi penambahan sekam tebu. J Fiska dan Terapannya. 2013; 1(3): 28–36.

Prabaningtyas RAJMS. Karakterisasi hidroksiapatit kalsit (PT. Dwi Selogiri Mas Sidoarjo) sebagai bone graft sintesis menggunakan x-ray diffractometer (XRD) dan fourier transform infra red (FTIR). Thesis. Jember: Universitas Jember; 2015.

Kartikasari ND. Sintesis dan karakterisasi hidroksiapatit dari cangkang keong sawah (Pila ampullaceal) dengan porogen lilin sarang lebah sebagai aplikasi scaffold. Thesis.Surabaya: Universitas Airlangga; 2014.

Mozartha M, Praziandithe M, Sulistiawati S. Pengaruh penambahan hidroksiapatit dari cangkang telur terhadap kekuatan tekan glass ionomer cement. B-Dent. 2015; 1(2): 75–81.

Ardhiyanto HB, Yustisia Y. Potensi limbah dental gypsum sebagai bahan baku material pengganti tulang. Report. Jember: Universitas Jember; 2017.

Kutz M. Standard handbook of biomedical engineering and design. New York: McGraw-Hill; 2003. p. 156-8.

Ichsan MZ, Siswanto S, Hikmawati D. Sintesis komposit kolagen-hidroksiapatit sebagai kandidat bone graft. J Fisika dan Terapannya. 2013; 1(1): 89–103.


Refbacks

  • There are currently no refbacks.


View My Stats