Characteristics of chitosan from Penaeus monodon on chitosan-gelatin suspension viscosity
Downloads
Background: Chitosan synthesized from Penaeus monodon shells was developed into a chitosan-gelatin suspension as an injectable bone substitute for socket preservation. Purpose: To investigate the characteristics of chitosan from P. monodon shells and their influence on the viscosity of a chitosan-gelatin suspension. Methods: P. monodon shells from Tarakan Waters were prepared using three methods: Group 1) deproteinization-depigmentation-deacetylation, Group 2) demineralization-depigmentation-deacetylation, and Group 3) deproteinization-demineralization-depigmentation-deacetylation. The chitosan was characterized by morphology, moisture and ash content, molecular weight (MW), deacetylation degree (DD), and viscosity. This chitosan was made into a chitosan-gelatin suspension with a ratio of 45:55 (w/w%) (95 ml:110 ml). The differences in viscosity of the chitosan-gelatin suspension were determined using Kruskal–Wallis and Mann–Whitney tests. The effects of the chitosan’s MW and DD on the viscosity of the chitosan-gelatin suspension were analyzed using Spearman’s correlation. Results: Group 2 had the highest moisture content (10.63%), MW (159.68 kDa), viscosity of the chitosan powder (5.53 dPa.s), and viscosity of the chitosan-gelatin suspension (40.20 cps). Group 1 had the highest ash content (27.83%) and DD (93.72%). Group 3 showed the lowest ash content (1.06%), MW (37.12 kDa), and DD (86.22%), but it had good viscosity of the chitosan-gelatin suspension (37.25 cps). A significant difference in viscosity was found between the chitosan-gelatin suspension groups. Spearman’s correlation coefficients between the viscosity of the chitosan-gelatin suspension and MW and between the viscosity of the chitosan-gelatin suspension and DD were 0.389 and −0.195, respectively. Conclusion: The viscosity of a chitosan-gelatin suspension is influenced by the MW and DD of the chitosan powder. Chitosan from P. monodon can potentially be an injectable bone substitute in socket preservation.
Downloads
Udeabor SE, Heselich A, Al-Maawi S, Alqahtani AF, Sader R, Ghanaati S. Current knowledge on the healing of the extraction socket: a narrative review. Bioengineering. 2023; 10(10): 1145. doi: https://doi.org/10.3390/bioengineering10101145
Ismiyatin K, Anindya C, Widjaja OV, Harseno S, Dzulfiqar AA, Binti Tengku Ahmad Noor TNE. Hemisection with socket preservation using alloplastic bone graft and platelet-rich fibrin. Dent J. 2025; 58(1): 100–6. doi: https://doi.org/10.20473/j.djmkg.v58.i1.p100-106
Anwar SA, Solechan. Analisa karakteristik dan sifat mekanik scaffold rekonstruksi mandibula dari material bhipasis calcium phospate dengan penguat cangkang kerang srimping dan gelatin menggunakan metode functionally graded. In: Prosiding SNATIF. Universitas Muria Kudus; 2014. p. 137–44. web: https://jurnal.umk.ac.id/index.php/SNA/article/view/186
Pratiwi AR, Yuliati A, Soepribadi I, Ariani MD. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles. Dent J (Majalah Kedokt Gigi). 2015; 48(4): 213. doi: https://doi.org/10.20473/j.djmkg.v48.i4.p213-216
Sularsih S. The pore size of chitosan-Aloe vera scaffold and its effect on VEGF expressions and woven alveolar bone healing of tooth extraction of Cavia cobaya. Dent J. 2020; 53(3): 115–21. doi: https://doi.org/10.20473/j.djmkg.v53.i3.p115-121
Dewi LA, Hikmawati D, Siswanto. Analisis termal suspensi injectable bone susbtitute (IBS) berbasis komposit hidroksiapatit dan gelatin. J Fis Ter. 2016; 4(3): 18–28. web: https://journal.unair.ac.id/JFT@analisis-termal-suspensi-injectable-bone-substitute-(ibs)-berbasis-komposit-hidroksiapatit-dan-gelatin-article-11896-media-101-category-4.html
Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013; 5(Suppl 1): S125-7. doi: https://doi.org/10.4103/0975-7406.113312
Putra AP. Sintesis dan karakterisasi suspensi komposit hidroksiapatit-gelatin dengan penambahan alendronate sebagai injectable bone subtitute. Universitas Airlangga; 2014. web: https://repository.unair.ac.id/28416/
Kartikasari N, Yuliati A, Kriswandini IL. Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds. Dent J. 2016; 49(3): 153–7. doi: https://doi.org/10.20473/j.djmkg.v49.i3.p153-157
Singh M, Verma SK, Biswas I, Mehta R. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid. Mater Res Express. 2018; 5(5): 055704. doi: https://doi.org/10.1088/2053-1591/aac25c
Tengku Mohd TA, Baco J, Bakar NFA, Jaafar MZ. Effects of particle shape and size on nanofluid properties for potential Enhanced Oil Recovery (EOR). MATEC Web Conf. 2016; 69: 03006. doi: https://doi.org/10.1051/matecconf/20166903006
Devi I, Sufarnap E, Finna, Pane ERP. Chitosan’s effects on the acidity, copper ion release, deflection, and surface roughness of copper-nickel-titanium archwire. Dent J. 2023; 56(1): 41–7. doi: https://doi.org/10.20473/j.djmkg.v56.i1.p41-47
Yadav M, Kaushik B, Rao GK, Srivastava CM, Vaya D. Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review. Carbohydr Polym Technol Appl. 2023; 5: 100323. doi: https://doi.org/10.1016/j.carpta.2023.100323
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021; 22(14): 7449. doi: https://doi.org/10.3390/ijms22147449
Kurniawidi DW, Alaa S, Nurhaliza E, Safitri DO, Rahayu S, Ali M, Amin M. Synthesis and characterization of nano chitosan from vannamei shrimp shell (Litopenaeus vannamei). J Ilm Perikan dan Kelaut. 2022; 14(2): 380–7. doi: https://doi.org/10.20473/jipk.v14i2.32864
Rahmitasari F. Scaffold 3D kitosan dan kolagen sebagai graft pada kasus kerusakan tulang. J Mater Kedokt Gigi. 2018; 5(2): 1–7. doi: https://doi.org/10.32793/jmkg.v5i2.246
Kamadjaja MJK. Bone remodeling using a three-dimensional chitosan - hydroxyapatite scaffold seeded with hypoxic conditioned human amnion mesenchymal stem cells. Dent J. 2021; 54(2): 68–73. doi: https://doi.org/10.20473/j.djmkg.v54.i2.p68-73
Fernandes Queiroz M, Melo K, Sabry D, Sassaki G, Rocha H. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2014; 13(1): 141–58. doi: https://doi.org/10.3390/md13010141
Tanasale MFJDP, Telussa I, Sekewael SJ. Ekstraksi dan karakterisasi kitosan dari kulit udang windu (Penaeus monodon) serta proses depolimerisasi kitosan dengan hidrogen peroksida berdasarkan variasi suhu pemanasan. Indones J Chem Res. 2016; 3(2): 308–18. doi: https://doi.org/10.30598/ijcr.2016.3-mat
El Knidri H, Belaabed R, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A. Physicochemical characterization of chitin and chitosan producted from Parapenaeus Longirostris shrimp shell wastes. J Mater Environ Sci. 2017; 8(10): 3648–53. web: https://www.jmaterenvironsci.com/Document/vol8/vol8_N10/385-JMES-El%20Knidri.pdf
De Queiroz Antonino R, Lia Fook B, De Oliveira Lima V, De Farias Rached R, Lima E, Da Silva Lima R, Peniche Covas C, Lia Fook M. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs. 2017; 15(5): 141. doi: https://doi.org/10.3390/md15050141
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015; 13(3): 1133–74. doi: https://doi.org/10.3390/md13031133
Minh TLT, Truc TT, Osako K. The effect of deproteinization methods on the properties of glucosamine hydrochloride from shells of white leg shrimp (Litopenaeus vannamei) and black tiger shrimp (Penaeus monodon). Ciência Rural. 2022; 52(1): e20200723. doi: https://doi.org/10.1590/0103-8478cr20200723
Goosen MFA. Applications of chitin and chitosan. Goosen MFA, editor. CRC Press; 2020. p. 348. doi: https://doi.org/10.1201/9781003072812
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: properties and its application in agriculture in context of molecular weight. Polymers (Basel). 2023; 15(13): 2867. doi: https://doi.org/10.3390/polym15132867
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: sources, processing and modification techniques. Gels. 2022; 8(7): 393. doi: https://doi.org/10.3390/gels8070393
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol. 2017; 105: 1358–68. doi: https://doi.org/10.1016/j.ijbiomac.2017.07.087
Nicolay V, Nina S, Yuliya K, Galina B. Formation of polyelectrolyte complexes from chitosan and alkaline gelatin. KnE Life Sci. 2020; : 109–119. doi: https://doi.org/10.18502/kls.v5i1.6031
Rianti D, Purnamasari AE, Putri RR, Salsabilla NZ, Faradillah, Munadziroh E, Agustantina TH, Meizarini A, Yuliati A, Syahrom A. The compressive strength and static biodegradation rate of chitosan-gelatin limestone-based carbonate hydroxyapatite composite scaffold. Dent J. 2023; 56(3): 160–5. doi: https://doi.org/10.20473/j.djmkg.v56.i3.p160-165
Warsito MF, Agustiani F. A review on factors affecting chitosan nanoparticles formation. IOP Conf Ser Mater Sci Eng. 2021; 1011(1): 012027. doi: https://doi.org/10.1088/1757-899X/1011/1/012027
Copyright (c) 2025 Dental Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License