A mucoadhesive gingival patch with Epigallocatechin-3-gallate green tea (Camellia sinensis) as an alternative adjunct therapy for periodontal disease: A narrative review
Downloads
Background: Periodontitis is a progressive destructive periodontal disease. The prevalence of periodontal disease in Indonesia reaches 74.1% and mostly occurs in the productive age group. Most of the periodontopathogenic bacteria are gram-negative bacteria and have endotoxin in the form of lipopolysaccharide (LPS), which can penetrate the periodontal tissue and induce an inflammatory response. In inflammatory conditions, osteoclastic activity is higher than osteoblastic activity, which causes bone destruction. This results in an imbalance between osteoclast-induced bone resorption and osteoblast-induced bone formation. The current preferred treatment for periodontitis is scaling root planning (SRP), but this therapy cannot repair the damaged periodontal tissue caused by periodontitis. Purpose: To describe the possibility of using a mucoadhesive gingival patch with Epigallocatechin-3-gallate (EGCG) green tea (Camellia sinensis) as alternative adjunct therapy for periodontal disease. Review: EGCG is the main component of green tea catechins, which have antitumor, antioxidant, anti-inflammatory, anti-fibrotic, and pro-osteogenic effects. However, the weaknesses so far regarding the use of EGCG as an alternative treatment is its low oral bioavailability and the concentration of EGCG absorbed by the body decreasing when accompanied by food. EGCG can be used with a mucoadhesive gingival patch to optimise bioavailability and absorption and increase local concentration and sustained release of EGCG. EGCG encourages bone development and braces mesenchymal stem cells (MSCs) differentiation for osteoblast by enhancing the expression of bone morphogenic protein 2 (BMP2). EGCG also has been proven to increase the expression of RUNX2 and ALP activity that induces osteoblast differentiation and bone mineralisation. Conclusion: A mucoadhesive gingival patch containing EGCG Green Tea (C. sinensis) may potentially induce osteoblastic activity as an adjunct therapy to repair the periodontal tissue damage due to periodontal disease.
Downloads
Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390(10100): 1211–59. doi: https://doi.org/10.1016/S0140-6736(17)32154-2
Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global prevalence of periodontal disease and lack of its surveillance. Sci World J. 2020; 2020: 2146160. doi: https://doi.org/10.1155/2020/2146160
Kumar S. Evidence-based update on diagnosis and management of gingivitis and periodontitis. Dent Clin North Am. 2019; 63(1): 69–81. doi: https://doi.org/10.1016/j.cden.2018.08.005
Newman MG, Takei HH, Klokkevold PR, Carranza FA. Newman and Carranza's clinical periodontology. 13th ed. Philadelphia: Elsevier Saunders; 2018. p. 30–1, 41–7, 101, 107, 164, 198–9, 484–5.
Latif SA, Vandana KL, Thimmashetty J, Dalvi PJ. Azithromycin buccal patch in treatment of chronic periodontitis. Indian J Pharmacol. 2016; 48(2): 208–13. doi: https://doi.org/10.4103/0253-7613.178829
Gross AJ, Paskett KT, Cheever VJ, Lipsky MS. Periodontitis: a global disease and the primary care provider's role. Postgrad Med J. 2017; 93(1103): 560–5. doi: https://doi.org/10.1136/postgradmedj-2017-134801
Szulc M, Zakrzewska A, Zborowski J. Local drug delivery in periodontitis treatment: A review of contemporary literature. Dent Med Probl. 2018; 55(3): 333–42. doi: https://doi.org/10.17219/dmp/94890
Bao J, Yang Y, Xia M, Sun W, Chen L. Wnt signaling: An attractive target for periodontitis treatment. Biomed Pharmacother. 2021; 133: 110935. doi: https://doi.org/10.1016/j.biopha.2020.110935
Lim SY, Dafydd M, Ong J, Ord-McDermott LA, Board-Davies E, Sands K, Williams D, Sloan AJ, Heard CM. Mucoadhesive thin films for the simultaneous delivery of microbicide and anti-inflammatory drugs in the treatment of periodontal diseases. Int J Pharm. 2020; 573: 118860. doi: https://doi.org/10.1016/j.ijpharm.2019.118860
Pagano C, Giovagnoli S, Perioli L, Tiralti MC, Ricci M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur J Pharm Sci. 2020; 142: 105125. doi: https://doi.org/10.1016/j.ejps.2019.105125
Ningsih DS, Idroes R, Bachtiar BM, Khairan. The potential of five therapeutic medicinal herbs for dental treatment : A review. IOP Conf Ser Mater Sci Eng. 2019; 523(1): 012009. doi: https://doi.org/10.1088/1757-899X/523/1/012009
Sakagami H, Watanabe T, Hoshino T, Suda N, Mori K, Yasui T, Yamauchi N, Kashiwagi H, Gomi T, Oizumi T, Nagai J, Uesawa Y, Takao K, Sugita Y. Recent progress of basic studies of natural products and their dental application. Med (Basel, Switzerland). 2018; 6(1): 4. doi: https://doi.org/10.3390/medicines6010004
Moghadam ET, Yazdanian M, Tahmasebi E, Tebyanian H, Ranjbar R, Yazdanian A, Seifalian A, Tafazoli A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur J Pharmacol. 2020; 889: 173665. doi: https://doi.org/10.1016/j.ejphar.2020.173665
Aboulwafa MM, Youssef FS, Gad HA, Altyar AE, Al-Azizi MM, Ashour ML. A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control. Antioxidants (Basel, Switzerland). 2019; 8(10): 455. doi: https://doi.org/10.3390/antiox8100455
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020; 21(5): 1744. doi: https://doi.org/10.3390/ijms21051744
Tominari T, Matsumoto C, Watanabe K, Hirata M, Grundler FMW, Miyaura C, Inada M. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio. 2015; 5: 522–7. doi: https://doi.org/10.1016/j.fob.2015.06.003
de Almeida JM, Marques BM, Novaes VCN, de Oliveira FLP, Matheus HR, Fiorin LG, Ervolino E. Influence of adjuvant therapy with green tea extract in the treatment of experimental periodontitis. Arch Oral Biol. 2019; 102: 65–73. doi: https://doi.org/10.1016/j.archoralbio.2019.03.028
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Prim. 2017; 3(1): 17038. doi: https://doi.org/10.1038/nrdp.2017.38
Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H. Immunomodulatory factors gene polymorphisms in chronic periodontitis: an overview. BMC Oral Health. 2019; 19(1): 29. doi: https://doi.org/10.1186/s12903-019-0715-7
Könönen E, Gursoy M, Gursoy UK. Periodontitis: A multifaceted disease of tooth-supporting tissues. J Clin Med. 2019; 8(8): 1135. doi: https://doi.org/10.3390/jcm8081135
Javadzadeh Y, Hamedeyaz S. Floating drug delivery systems for eradication of Helicobacter pylori in treatment of peptic ulcer disease. In: Trends in Helicobacter pylori infection. InTech; 2014. p. 57353. doi: https://doi.org/10.5772/57353
Rafiei M, Kiani F, Sayehmiri F, Sayehmiri K, Sheikhi A, Zamanian Azodi M. Study of Porphyromonas gingivalis in periodontal diseases: A systematic review and meta-analysis. Med J Islam Repub Iran. 2017; 31: 62. doi: https://doi.org/10.18869/mjiri.31.62
Fiorillo L, Cervino G, Laino L, D'Amico C, Mauceri R, Tozum TF, Gaeta M, Cicciù M. Porphyromonas gingivalis, periodontal and systemic implications: A systematic review. Dent J. 2019; 7(4): 114. doi: https://doi.org/10.3390/dj7040114
Yang J-B, Yang S-X, Li H-T, Yang J, Li D-Z. Comparative chloroplast genomes of camellia species. Unver T, editor. PLoS One. 2013; 8(8): e73053. doi: https://doi.org/10.1371/journal.pone.0073053
Nugraha AP, Narmada IB, Sitasari PI, Inayati F, Wira R, Triwardhani A, Hamid T, Ardani IGAW, Djaharu'ddin I, Rahmawati D, Iskandar RPD. High mobility group box 1 and heat shock protein-70 expression post (-)-Epigallocatechin-3-gallate in East Java green tea Methanolic extract administration during orthodontic tooth movement in Wistar rats. Pesqui Bras Odontopediatria Clin Integr. 2020; 20: e5347. doi: https://doi.org/10.1590/pboci.2020.040
Narmada IB, Sarasati A, Wicaksono S, Rezkita F, Wibawa KGP, Hayaza S, Nugraha AP. Phytochemical screening, antioxidant activity, functional groups and chemical element characterization analysis of (-)-Epigallocatechin-3-gallate (EGCG) in East Javanese green tea methanolic extract: An experimental in vitro study. Syst Rev Pharm. 2020; 11(5): 511–9. doi: https://doi.org/10.31838/srp.2020.5.68
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct. 2017; 8(8): 2650–62. doi: https://doi.org/10.1039/c7fo00611j
Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. Int J Mol Sci. 2019; 20(15): 3630. doi: https://doi.org/10.3390/ijms20153630
Chu KO, Chan KP, Yang YP, Qin YJ, Li WY, Chan SO, Wang CC, Pang CP. Effects of EGCG content in green tea extract on pharmacokinetics, oxidative status and expression of inflammatory and apoptotic genes in the rat ocular tissues. J Nutr Biochem. 2015; 26(11): 1357–67. doi: https://doi.org/10.1016/j.jnutbio.2015.07.001
Nishioku T, Kubo T, Kamada T, Okamoto K, Tsukuba T, Uto T, Shoyama Y. (−)-Epigallocatechin-3-gallate inhibits RANKL-induced osteoclastogenesis via downregulation of NFATc1 and suppression of HO-1–HMGB1–RAGE pathway. Biomed Res. 2020; 41(6): 269–77. doi: https://doi.org/10.2220/biomedres.41.269
Legeay S, Rodier M, Fillon L, Faure S, Clere N. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients. 2015; 7(7): 5443–68. doi: https://doi.org/10.3390/nu7075230
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and antimicrobial activities of (-)-Epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Compr Rev Food Sci Food Saf. 2018; 17(3): 732–53. doi: https://doi.org/10.1111/1541-4337.12346
Wu YR, Choi HJ, Kang YG, Kim JK, Shin J-W. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine. 2017; 12: 7007–13. doi: https://doi.org/10.2147/IJN.S146296
Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 2021; 9(4): 435–45. web: https://jppres.com/jppres/in-silico-tea-catechin-as-hiv-antiretroviral-agent/
Mishra M. Concise encyclopedia of biomedical polymers and polymeric biomaterials. Boca Raton: CRC Press; 2017. p. 111–220. doi: https://doi.org/10.1081/E-EBPPC
Alawdi S, Solanki AB. Mucoadhesive drug delivery systems: A review of recent developments. J Sci Res Med Biol Sci. 2021; 2(1): 50–64. doi: https://doi.org/10.47631/jsrmbs.v2i1.213
Asati S, Jain S, Choubey A. Bioadhesive or mucoadhesive drug delivery system: A potential alternative to conventional therapy. J Drug Deliv Ther. 2019; 9(A): 858–67. web: http://jddtonline.info/index.php/jddt/article/view/3708
Gales R, Ghonaim HM, Gardouh AR, Ghorab MM, Badawy SS. Preparation and characterization of polymeric mucoadhesive film for buccal administration. Br J Pharm Res. 2014; 4(4): 453–76. doi: https://doi.org/10.9734/BJPR/2014/5399
Prasanth V V, Puratchikody A, Mathew ST, Ashok KB. Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery. Res Pharm Sci. 2014; 9(4): 259–68. pubmed: https://pubmed.ncbi.nlm.nih.gov/25657797/
Florencio-Silva R, Sasso GR da S, Sasso-Cerri E, Simíµes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015; 2015: 421746. doi: https://doi.org/10.1155/2015/421746
Henry JP, Bordoni B. Histology, Osteoblasts. [Updated 2021 May 10]. StatPearls. Treasure Island (FL): StatPearls Publishing; p. 1–29. pubmed: https://pubmed.ncbi.nlm.nih.gov/32491724/
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015; 2015: 1–10. doi: https://doi.org/10.1155/2015/615486
Ramadhani NF, Nugraha AP, Ihsan IS, Agung YA, Rantam FA, Ernawati DS, Ridwan RD, Narmada IB, Ansori ANM, Hayaza S, Noor TNEBTA. Gingival medicinal signaling cells conditioned medium effect on the osteoclast and osteoblast number in Lipopolysaccharide-induced calvaria bone resorption in Wistar rats' (Rattus novergicus). Res J Pharm Technol. 2021; 14(10): 5232–7. doi: https://doi.org/10.52711/0974-360X.2021.00911
Yesudhas D, Gosu V, Anwar MA, Choi S. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol. 2014; 5: 334. doi: https://doi.org/10.3389/fimmu.2014.00334
Muñoz-Carrillo JL, Hernández-Reyes VE, García-Huerta OE, Chávez-Ruvalcaba F, Chávez-Ruvalcaba MI, Chávez-Ruvalcaba KM, Díaz-Alfaro L. Pathogenesis of periodontal disease. In: Yussif N, editor. Periodontal disease - Diagnostic and adjunctive non-surgical considerations. London: IntechOpen; 2019. p. 86548. doi: https://doi.org/10.5772/intechopen.86548
Singh J, Deep P. A review article on mucoadhesive buccal delivery system. Int J Pharm Sci Res. 2013; 4(3): 916–27. doi: http://doi.org/10.13040/IJPSR.0975-8232.4(3).916-27
Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014; 28(2): 81–97. doi: https://doi.org/10.7555/JBR.27.20120136
Khurshid Z, Zafar MS, Zohaib S, Najeeb S, Naseem M. Green tea (Camellia Sinensis): chemistry and oral health. Open Dent J. 2016; 10: 166–73. doi: https://doi.org/10.2174/1874210601610010166
Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. Health benefits and chemical composition of matcha green tea: A review. Molecules. 2020; 26(1): 85. doi: https://doi.org/10.3390/molecules26010085
Reygaert WC. An update on the health benefits of green tea. Beverages. 2017; 3(1): 6. doi: https://doi.org/10.3390/beverages3010006
Cai Y, Chen Z, Liu H, Xuan Y, Wang X, Luan Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice. Int Immunopharmacol. 2015; 29(2): 839–45. doi: https://doi.org/10.1016/j.intimp.2015.08.033
Lin S-Y, Kang L, Wang C-Z, Huang HH, Cheng T-L, Huang H-T, Lee M-J, Lin Y-S, Ho M-L, Wang G-J, Chen C-H. (-)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules. 2018; 23(12): 3221. doi: https://doi.org/10.3390/molecules23123221
Lin S-Y, Kang L, Chen J-C, Wang C-Z, Huang HH, Lee M-J, Cheng T-L, Chang C-F, Lin Y-S, Chen C-H. (-)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect. Phytomedicine. 2019; 55: 165–71. doi: https://doi.org/10.1016/j.phymed.2018.07.012
Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by runx2. Int J Mol Sci. 2019; 20(7): 1694. doi: https://doi.org/10.3390/ijms20071694
Qin X, Jiang Q, Miyazaki T, Komori T. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum Mol Genet. 2019; 28(6): 896–911. doi: https://doi.org/10.1093/hmg/ddy386
Byun MR, Sung MK, Kim AR, Lee CH, Jang EJ, Jeong MG, Noh M, Hwang ES, Hong J-H. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation. J Biol Chem. 2014; 289(14): 9926–35. doi: https://doi.org/10.1074/jbc.M113.522870
Sitasari PI, Narmada IB, Hamid T, Triwardhani A, Nugraha AP, Rahmawati D. East Java green tea methanolic extract can enhance RUNX2 and Osterix expression during orthodontic tooth movement in vivo. J Pharm Phyther Res. 2020; 8(4): 290–8. web: https://jppres.com/jppres/methanolic-extract-of-green-tea-increases-runx2-and-osterix/
Copyright (c) 2022 Dental Journal (Majalah Kedokteran Gigi)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License