Wound healing induces VEGF expression stimulated by forest honey in palatoplasty Sprague Dawley
Downloads
Background: Cleft palate is a craniofacial disorder with definitive therapy using the V–Y pushback technique palatoplasty, which has the impact of leaving the bone exposed on the palate with long wound healing and a high risk of infection. Forest honey has high antioxidants and the ability to accelerate wound healing. Purpose: This study aims to determine the effect of forest honey on vascular endothelial growth factor (VEGF) expression to accelerate the wound healing process after palatoplasty biopsy. Methods: Posttest only control group design using Sprague Dawley palatoplasty was performed on 15 rats which were divided into three groups, namely the honey treatment (KP), Aloclair as a positive control (KPP), and aquadest as a negative control (KKN). As much as 25 mg of honey was given therapeutically, and VEGF expression analysis post-biopsy palatoplasty was measured using the ELISA test. ANOVA analysis was carried out to determine the significant differences between each treatment, and in silico analysis was conducted to determine the compounds' role in honey on the mechanism of VEGF expression. Results: Statistical analysis of VEGF expression in the KP group was 41.10 ng/ml ± 0.26, the KKP was 39.57 ± 0.27, while the KKN was 33.26 ± 0.62 (p≤ 0.01). In silico study, genistein (C15H10O5) targets several signaling pathways such as PI3K-Akt, AMPK, and mTOR, affecting accelerated proliferation and angiogenesis. Conclusion: In wound healing acceleration, forest honey induced VEGF expression through the genistein mechanism of angiogenesis and cell proliferation.
Downloads
Bennun RD, Harfin JF, Sándor GKB, Genecov D. Cleft lip and palate management. Bennun RD, Harfin JF, Sándor GKB, Genecov D, editors. Cleft Lip and Palate Management: A Comprehensive Atlas. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015. p. 1–267. doi: https://doi.org/10.1002/9781119050858
Vyas T, Gupta P, Kumar S, Gupta R, Gupta T, Singh H. Cleft of lip and palate: A review. J Fam Med Prim Care. 2020; 9(6): 2621. doi: https://doi.org/10.4103/jfmpc.jfmpc_472_20
Raj N, Raj V, Aeran H. Interim palatal lift prosthesis as a constituent of multidisciplinary approach in the treatment of velopharyngeal incompetence. J Adv Prosthodont. 2012; 4(4): 243. doi: https://doi.org/10.4047/jap.2012.4.4.243
Rossell-Perry P, Cotrina-Rabanal O, Barrenechea-Tarazona L, Vargas-Chanduvi R, Paredes-Aponte L, Romero-Narvaez C. Mucoperiosteal flap necrosis after primary palatoplasty in patients with cleft palate. Arch Plast Surg. 2017; 44(03): 217–22. doi: https://doi.org/10.5999/aps.2017.44.3.217
Oliveira MHM de F, Rezende AL de F, Ibiapina C da C, Godinho RN. Hearing impairment in children with cleft lip and cleft palate. Rev Médica Minas Gerais. 2015; 25(3): 400–5. doi: https://doi.org/10.5935/2238-3182.20150080
Gongorjav Na, Luvsandorj D, Nyanrag P, Garidhuu A, Sarah Eg. Cleft palate repair in Mongolia: Modified palatoplasty vs. conventional technique. Ann Maxillofac Surg. 2012; 2(2): 131. doi: https://doi.org/10.4103/2231-0746.101337
Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care. 2014; 3(10): 647–61. doi: https://doi.org/10.1089/wound.2013.0517
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016; 100(5): 979–84. doi: https://doi.org/10.1189/jlb.4MR0316-102R
Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 2013; 72(3): 206–17. doi: https://doi.org/10.1016/j.jdermsci.2013.07.008
Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol. 2016; 91(5): 614–20. doi: https://doi.org/10.1590/abd1806-4841.20164741
Kumar P, Kumar S, Udupa EP, Kumar U, Rao P, Honnegowda T. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthetic Res. 2015; 2(5): 243. doi: https://doi.org/10.4103/2347-9264.165438
Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int. 2014; 2014: 756078. doi: https://doi.org/10.1155/2014/756078
Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci. 2013; 16(6): 731–42. doi: https://doi.org/10.22038/ijbms.2013.988
Miguel M, Antunes M, Faleiro M. Honey as a complementary medicine. Integr Med Insights. 2017; 12(2): 117863371770286. doi: https://doi.org/10.1177/1178633717702869
Guo D, Wang Q, Li C, Wang Y, Chen X. VEGF stimulated the angiogenesis by promoting the mitochondrial functions. Oncotarget. 2017; 8(44): 77020–7. doi: https://doi.org/10.18632/oncotarget.20331
Daaboul HE, Dagher C, Taleb RI, Bodman-Smith K, Shebaby WN, El-Sibai M, Mroueh MA, Daher CF. β-2-Himachalen-6-ol inhibits 4T1 cells-induced metastatic triple negative breast carcinoma in murine model. Chem Biol Interact. 2019; 309: 108703. doi: https://doi.org/10.1016/j.cbi.2019.06.016
Varoni EM, Lodi G, Sardella A, Carrassi A, Iriti M. Plant polyphenols and oral health: Old phytochemicals for new fields. Curr Med Chem. 2012; 19(11): 1706–20. doi: https://doi.org/10.2174/092986712799945012
Ma J, Zhou X. Pro-angiogenic and anti-angiogenic effects of small molecules from natural products. In: Nutraceuticals and Natural Product Derivatives. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018. p. 81–109. doi: https://doi.org/10.1002/9781119436713.ch4
Ibnu YS. Potensi madu sebagai terapi topikal otitis eksterna. J Ilm Kedokt Wijaya Kusuma. 2019; 8(2): 7–22. doi: https://doi.org/10.30742/jikw.v8i2.619
Zhu L, He J, Cao X, Huang K, Luo Y, Xu W. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food. Sci Rep. 2016; 6(1): 16092. doi: https://doi.org/10.1038/srep16092
Wang S, Liu J, Yong W, Chen Q, Zhang L, Dong Y, Su H, Tan T. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta. 2015; 131: 562–9. doi: https://doi.org/10.1016/j.talanta.2014.08.028
National Library of Medicine. NCBI PubMed Overview. National Center for Biotechnology Information. 2021. web: https://pubmed.ncbi.nlm.nih.gov/about/
National Center for Biotechnology Information. PubChem database NCBI. 2021. Available from: https://pubchem.ncbi.nlm.nih.gov/.
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016; 44(D1): D380-4. doi: https://doi.org/10.1093/nar/gkv1277
Hermawan A, Putri H. Bioinformatics studies provide insight into possible target and mechanisms of action of nobiletin against cancer stem cells. Asian Pacific J cancer Prev. 2020; 21(3): 611–20. doi: https://doi.org/10.31557/APJCP.2020.21.3.611
Levitt J, Bernardo S, Whang T. How to perform a punch biopsy of the skin. N Engl J Med. 2013; 369(11): e13. doi: https://doi.org/10.1056/NEJMvcm1105849
Almaz AI, Purnawati RD, Istiadi H, Susilaningsih N. The effect of honey in second degree burn healing on Wistar rats (overview of angiogenesis and the number of fibroblasts). Sains Med. 2020; 11(1): 27–32. doi: https://doi.org/10.30659/sainsmed.v11i1.7614
Martinotti S, Ranzato E. Honey, wound repair and regenerative medicine. J Funct Biomater. 2018; 9(2): 34–40. doi: https://doi.org/10.3390/jfb9020034
Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J Tissue Viability. 2016; 25(2): 98–118. doi: https://doi.org/10.1016/j.jtv.2015.12.002
Gopalakrishnan A, Ram M, Kumawat S, Tandan S, Kumar D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J Exp Biol. 2016; 54(3): 187–95. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/27145632
Tu F, Pang Q, Chen X, Huang T, Liu M, Zhai Q. Angiogenic effects of apigenin on endothelial cells after hypoxia-reoxygenation via the caveolin-1 pathway. Int J Mol Med. 2017; 40(6): 1639–48. doi: https://doi.org/10.3892/ijmm.2017.3159
Sergiel I, Pohl P, Biesaga M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2014; 145: 404–8. doi: https://doi.org/10.1016/j.foodchem.2013.08.068
Hu W-H, Wang H-Y, Xia Y-T, Dai DK, Xiong Q-P, Dong TT-X, Duan R, Chan GK-L, Qin Q-W, Tsim KW-K. Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front Pharmacol. 2020; 11: 526–38. doi: https://doi.org/10.3389/fphar.2020.00526
Nugroho AM, Elfiah U, Normasari R. Pengaruh gel ekstrak dan serbuk mentimun (Cucumis sativus) terhadap angiogenesis pada penyembuhan luka bakar derajat IIB pada tikus Wistar. e-Jurnal Pustaka Kesehat. 2016; 4(3): 443–8. web: https://jurnal.unej.ac.id/index.php/JPK/article/view/5409
Fu J, Huang J, Lin M, Xie T, You T. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization. J Surg Res. 2020; 246: 213–23. doi: https://doi.org/10.1016/j.jss.2019.09.011
Favaro E, Granata R, Miceli I, Baragli A, Settanni F, Cavallo Perin P, Ghigo E, Camussi G, Zanone MM. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalli. Diabetologia. 2012; 55(4): 1058–70. doi: https://doi.org/10.1007/s00125-011-2423-y
Eller-Borges R, Batista WL, da Costa PE, Tokikawa R, Curcio MF, Strumillo ST, Sartori A, Moraes MS, de Oliveira GA, Taha MO, Fonseca F V., Stern A, Monteiro HP. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration. Nitric oxide Biol Chem. 2015; 47: 40–51. doi: https://doi.org/10.1016/j.niox.2015.03.004
Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal. 2016; 10(4): 347–54. doi: https://doi.org/10.1007/s12079-016-0352-8
Alzoubi A, Ghazwi R, Alzoubi K, Alqudah M, Kheirallah K, Khabour O, Allouh M. Vascular endothelial growth factor receptor inhibition enhances chronic obstructive pulmonary disease picture in mice exposed to waterpipe smoke. Folia Morphol (Warsz). 2018; 77(3): 447–55. doi: https://doi.org/10.5603/FM.a2017.0120
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020; 5(20): 11849–72. doi: https://doi.org/10.1021/acsomega.0c01818
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020; 77(9): 1745–70. doi: https://doi.org/10.1007/s00018-019-03351-7
Copyright (c) 2023 Dental Journal (Majalah Kedokteran Gigi)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License