Mobe leaf (Artocarpus lakoocha Buch. Ham) ethanol extract's antibacterial activity on Streptococcus mutans cell membrane leakage and biofilm formation: An in vitro study
Downloads
Background: Using fixed orthodontic appliances inhibits oral hygiene, which can lead to the increased development of biofilms and Streptococcus mutans, a cariogenic bacterium that is well known for causing dental caries, derived from bacteria of the Streptococcus genus. In order to decrease biofilm and the degree of cariogenic bacteria in the oral cavity, a variety of herbal ingredients are used. Among these, mobe (Artocarpus lakoocha Buch. Ham) leaves are herbal ingredients with antibacterial properties. Purpose: This study aimed to investigate the antibacterial activity, antibiofilm, and leakage of DNA and protein from mobe leaves. Methods: The diffusion method was used to assess antibacterial activity and determine the minimum inhibitory concentration. The antibiofilm activity was evaluated with Ultraviolet–visible (UV-Vis) spectrophotometry (600 nm), using violet crystal staining. The detection of DNA and protein leakage was carried out by checking for absorbance values using the UV-Vis spectrophotometry (260 nm and 280 nm). An increase in the absorbance value in the measured cell indicated an increase in the level of cell content produced by the cell. One-way analysis of variance was used statistically analyze the results of this study (P < 0.05). Results: Mobe leaf (A. lakoocha) extract's minimum inhibitory concentration level was 3.125 mg/ml, the effective concentration of ethanol extract for inhibiting biofilm formation was 3.125 mg/ml, and the effective concentration of ethanol extract that could cause DNA and protein leakage was 50 mg/ml. Conclusions: Mobe leaf extract has good MIC for S. mutans.
Downloads
Ardani IGAW, Budipramana M, Rachmawati E, Nugraha AP, Ardana IKKG, Budhy TI, Hassan R, Listyorini D, Sarno R. COL1A1 and FGFR2 single-nucleotide polymorphisms found in Class II and Class III skeletal malocclusions in Javanese population. Eur J Dent. 2023; 17(1): 183–90. doi: https://doi.org/10.1055/s-0042-1744371
Shirozaki MU, Ferreira JTL, Küchler EC, Matsumoto MAN, Aires CP, Nelson-Filho P, Romano FL. Quantification of Streptococcus mutans in different types of ligature wires and elastomeric chains. Braz Dent J. 2017; 28(4): 498–503. doi: https://doi.org/10.1590/0103-6440201601401
Mishra S, Routray S, Sahu SK, Nanda SB, Sahu KC. The role and efficacy of herbal antimicrobial agents in orthodontic treatment. J Clin Diagnostic Res. 2014; 8(6): 10–3. doi: https://doi.org/10.7860/JCDR/2014/7349.4464
Ardani IGWA, Nugraha AP, Vitamamy DG, Gautama S, Alida, Rahmawati D, Hariati IVD, Caesar ADO, Aufa HR, Sugitto MR, Hassan R. Correlation of malocclusion with facial profile in Javanese population: A cephalometric analysis. J Int Dent Med Res. 2023; 16(2): 756–65. pdf: http://www.jidmr.com/journal/wp-content/uploads/2023/06/50-D23_2214_I_Gusti_Aju_Wahju_Ardani_Indonesia.pdf
Proffit WR, Fields HW, Larson BE, Sarver DM. Contemporary orthodontics. 6th ed. Philadelphia: Mosby Elsevier; 2019. p. 310–51. web: https://www.elsevier.com/books/contemporary-orthodontics/proffit/978-0-323-54387-3
Cobourne MT, DiBiase AT. Handbok of orthodontics. 2nd ed. Philadelphia: Elsevier; 2016. p. 209–61. web: https://books.google.co.id/books/about/Handbook_of_Orthodontics.html?id=ZQ7hCgAAQBAJ&redir_esc=y
Budi HS, Jameel MF, Widjaja G, Alasady MS, Mahmudiono T, Mustafa YF, Fardeeva I, Kuznetsova M. Study on the role of nano antibacterial materials in orthodontics (a review). Brazilian J Biol. 2024; 84: 1–7. doi: https://doi.org/10.1590/1519-6984.257070
Topaloglu-Ak A, Ertugrul F, Eden E, Ates M, Bulut H. Effect of orthodontic appliances on oral microbiota”6 month follow-up. J Clin Pediatr Dent. 2011; 35(4): 433–6. doi: https://doi.org/10.17796/jcpd.35.4.61114412637mt661
Petrauskiene S, Wanczewska N, Slabsinskiene E, Zemgulyte G. Self-reported changes in oral hygiene habits among adolescents receiving orthodontic treatment. Dent J. 2019; 7(4): 96. doi: https://doi.org/10.3390/dj7040096
Hepyukselen BG, Cesur MG. Comparison of the microbial flora from different orthodontic archwires using a cultivation method and PCR: A prospective study. Orthod Craniofac Res. 2019; 22(4): 354–60. doi: https://doi.org/10.1111/ocr.12335
Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ. Orthodontic treatment with fixed appliances and biofilm formation”a potential public health threat? Clin Oral Investig. 2014; 18(7): 1711–8. doi: https://doi.org/10.1007/s00784-014-1240-3
Shukla C, Maurya R, Singh V, Tijare M. Evaluation of changes in Streptococcus mutans colonies in microflora of the Indian population with fixed orthodontics appliances. Dent Res J (Isfahan). 2016; 13(4): 309–14. doi: https://doi.org/10.4103/1735-3327.187876
Dianawati N, Setyarini W, Widjiastuti I, Ridwan RD, Kuntaman K. The distribution of Streptococcus mutans and Streptococcus sobrinus in children with dental caries severity level. Dent J. 2020; 53(1): 36–9. doi: https://doi.org/10.20473/j.djmkg.v53.i1.p36-39
Subramaniam SK, Siswomihardjo W, Sunarintyas S. The effect of different concentrations of Neem (Azadiractha indica) leaves extract on the inhibition of Streptococcus mutans (In vitro). Dent J. 2005; 38(4): 176–9. doi: https://doi.org/10.20473/j.djmkg.v38.i4.p176-179
Nuraini P, Pradopo S, Pronorahardjo AS. Sucrose and xylitol-induced Streptococcus mutans biofilm adherence. Pesqui Bras Odontopediatria Clin Integr. 2020; 20: 1–5. doi: https://doi.org/10.1590/pboci.2020.035
Zero DT. Evidence for biofilm acid neutralization by baking soda. J Am Dent Assoc. 2017; 148(11): S10–4. doi: https://doi.org/10.1016/j.adaj.2017.09.005
Sunarko SA, Ekasari W, Astuti SD. Antimicrobial effect of pleomeleangustifolia pheophytin A activation with diode laser to streptococcus mutans. J Phys Conf Ser. 2017; 853(1): 012039. doi: https://doi.org/10.1088/1742-6596/853/1/012039
Saloom H, Mohammed-Salih H, Rasheed S. The influence of different types of fixed orthodontic appliance on the growth and adherence of microorganisms (in vitro study). J Clin Exp Dent. 2013; 5(1): e36-41. doi: https://doi.org/10.4317/jced.50988
Chhattani S, Shetty PC, Laxmikant S, Ramachandra C. In vitro assessment of photocatalytic titanium oxide surface-modified stainless steel and nickel titanium orthodontic wires for its antiadherent and antibacterial properties against Streptococcus mutans. Singh G, editor. J Indian Orthod Soc. 2014; 48: 82–7. doi: https://doi.org/10.5005/jp-journals-10021-1223
Kriswandini IL, Diyatri I, Putri IA. Density of Streptococcus mutans biofilm protein induced by glucose, lactose, soy protein and iron. Dent J. 2019; 52(2): 86–9. doi: https://doi.org/10.20473/j.djmkg.v52.i2.p86-89
Pribadi N, Yonas Y, Saraswati W. The inhibition of Streptococcus mutans glucosyltransferase enzyme activity by mangosteen pericarp extract. Dent J. 2017; 50(2): 97–101. doi: https://doi.org/10.20473/j.djmkg.v50.i2.p97-101
Hu P, Huang P, Chen MW. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol. 2013; 58(10): 1343–8. doi: https://doi.org/10.1016/j.archoralbio.2013.05.004
Ahn S-J, Ahn S-J, Wen ZT, Brady LJ, Burne RA. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun. 2008; 76(9): 4259–68. doi: https://doi.org/10.1128/IAI.00422-08
Huang P, Hu P, Zhou SY, Li Q, Chen WM. Morin inhibits sortase A and subsequent biofilm formation in Streptococcus mutans. Curr Microbiol. 2014; 68(1): 47–52. doi: https://doi.org/10.1007/s00284-013-0439-x
Pumpaluk P, Sritularak B, Likhitwitayawuid K, Lapirattanakul J. Antibacterial effect of herbal plants against three cariogenic microorganisms. M Dent J. 2017; 37(1): 71–80. web: https://he02.tci-thaijo.org/index.php/mdentjournal/article/view/180043
Gautam P, Patel R. Artocarpus lakoocha Roxb: An overview. Eur J Complement Altern Med. 2014; 1(1): 10–4. web: https://www.researchgate.net/publication/321098093
Povichit N, Phrutivorapongkul A, Suttajit M, Leelapornpisid P. Antiglycation and antioxidant activities of oxyresveratrol extracted from the heartwood of artocarpus lakoocha roxb. Maejo Int J Sci Technol. 2010; 4(3): 454–61. web: http://cmuir.cmu.ac.th/jspui/handle/6653943832/51193
Jagtap UB, Bapat VA. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2010; 129(2): 142–66. doi: https://doi.org/10.1016/j.jep.2010.03.031
Saowakon N, Tansatit T, Wanichanon C, Chanakul W, Reutrakul V, Sobhon P. Fasciola gigantica: Anthelmintic effect of the aqueous extract of Artocarpus lakoocha. Exp Parasitol. 2009; 122(4): 289–98. doi: https://doi.org/10.1016/j.exppara.2009.04.011
Teanpaisan R, Senapong S, Puripattanavong J. In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Trop J Pharm Res. 2014; 13(7): 1149–55. doi: https://doi.org/10.4314/tjpr.v13i7.20
Phoolcharoen W, Sooampon S, Sritularak B, Likhitwitayawuid K, Kuvatanasuchati J, Pavasant P. Anti-periodontal pathogen and a-inflammatory a of oxyresveratrol. Nat Prod Commun. 2013; 8(5): 1934578X1300800. doi: https://doi.org/10.1177/1934578X1300800518
Singhatong S, Leelarungrayub D, Chaiyasut C. Antioxidant and toxicity activities of Artocarpus lakoocha Roxb. heartwood extract. J Med Plants Res. 2010; 4(10): 947–53. web: https://academicjournals.org/journal/JMPR/article-abstract/35F86EF21511
Septama AW, Panichayupakaranant P. Artocarpin isolated from Artocarpus heterophyllus heartwoods alters membrane permeability of Streptococcus mutans. J Appl Pharm Sci. 2018; 8(6): 59–64. doi: https://doi.org/10.7324/JAPS.2018.8608
Wu J, Fan Y, Wang X, Jiang X, Zou J, Huang R. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans , and on biofilm formation, acid production, and virulence gene expression. Eur J Oral Sci. 2020; 128(1): 18–26. doi: https://doi.org/10.1111/eos.12667
Akhlaghi N, Sadeghi M, Fazeli F, Akhlaghi S, Mehnati M, Sadeghi M. The antibacterial effects of coffee extract, chlorhexidine, and fluoride against Streptococcus mutans and Lactobacillus plantarum: An in vitro study. Dent Res J (Isfahan). 2019; 16(5): 346–53. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/31543942
LeÌvesque CM, Voronejskaia E, Huang Y-CC, Mair RW, Ellen RP, Cvitkovitch DG. Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect Immun. 2005; 73(6): 3773–7. doi: https://doi.org/10.1128/IAI.73.6.3773-3777.2005
Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019; 8(1): 118. doi: https://doi.org/10.1186/s13756-019-0559-6
Fraise AP, Maillard J-Y, Sattar SA. Russell, Hugo & Ayliffe's: Principles and practice of disinfection, preservation and sterilization. 5th ed. Oxford, UK: Wiley-Blackwell; 2013. p. 5–7. doi: https://doi.org/10.1002/9781118425831
Musini A, Giri A. Investigation of mode of action of anti bacterial activity of Salacia oblonga extract against drug resistant pathogen. Brazilian Arch Biol Technol. 2019; 62: e19180051. doi: https://doi.org/10.1590/1678-4324-2019180051
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2): 71–9. doi: https://doi.org/10.1016/j.jpha.2015.11.005
Jiratanakittiwat K, Satirapipathkul C, Charnvanich D. The influences of extraction on the quantity of oxyresveratrol from Artocarpus lakoocha Roxb. Int J Biosci Biochem Bioinforma. 2020; 10(2): 110–6. doi: https://doi.org/10.17706/ijbbb.2020.10.2.110-116
Juniarti DE, Kusumaningsih T, Juliastuti WS, Soetojo A, Wungsu ND. Phytochemical analysis and antibacterial activity of purple leaf extract [Graptophyllum pictum (L.) Griff] against Streptococcus mutans. Acta Med Philipp. 2021; 55(8): 802–6. doi: https://doi.org/10.47895/amp.v55i8.2125
Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. Antimicrobial potential of actinomycetes isolated from unexplored hot Merzouga desert and their taxonomic diversity. Biol Open. 2018; 8(2): bio035410. doi: https://doi.org/10.1242/bio.035410
Zaini WS. Antibacterial effectiveness of Morinda citrifolia L. extract on Salmonella typhi bacteria using serial dilution method with 15 - 60 minutes contact time. Pharmacogn J. 2021; 13(4): 839–43. doi: https://doi.org/10.5530/pj.2021.13.107
Pargaputri AF, Munadziroh E, Indrawati R. Antibacterial effects of Pluchea indica Less leaf extract on E. faecalis and Fusobacterium nucleatum (in vitro). Dent J. 2016; 49(2): 93. doi: https://doi.org/10.20473/j.djmkg.v49.i2.p93-98
Moldenhauer J. Disinfection and decontamination: A practical handbook. Boca Raton: Taylor & Francis: CRC Press; 2018. p. 12–3. doi: https://doi.org/10.1201/9781351217026
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2014; 22(1): 132–49. doi: https://doi.org/10.2174/0929867321666140916113443
Wedagama DM, Wahjuningrum DA, Subiyanto A, Pangestika FW, Guspiari K, Goenharto S, Gopikrishna V. Antibacterial activity of Red Pine (Pinus densiflora) and Sumatran Pine (Pinus merkusii) leaf extracts against oral pathogens. J Int Dent Med Res. 2021; 14(2): 559–62. pdf: http://www.jidmr.com/journal/wp-content/uploads/2021/07/18-D21_1472_Dian_Agustin_Wahjuningrum_Indonesia.pdf
Joycharat N, Thammavong S, Limsuwan S, Homlaead S, Voravuthikunchai SP, Yingyongnarongkul B, Dej-adisai S, Subhadhirasakul S. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch Pharm Res. 2013; 36(6): 723–30. doi: https://doi.org/10.1007/s12272-013-0085-7
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials”A minireview. Materials (Basel). 2020; 13(14): 3224. doi: https://doi.org/10.3390/ma13143224
Sudhakar M, Venkata Ra B. Bactericidal and anti-biofilm activity of tannin fractions derived from Azadirachta against Streptococcus mutans. Asian J Appl Sci. 2020; 13(3): 132–43. doi: https://doi.org/10.3923/ajaps.2020.132.143
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License