Amelogenin and alkaline phosphatase expression in ameloblast after saltwater fish consumption in pregnant mice (Mus musculus)
Downloads
Background: The intricate process of tooth formation during embryonic development ensures sufficient nutrition for the growth of healthy dental tissues. Amelogenin and alkaline phosphatase (ALP) are serine proteinases secreted by the ameloblast during the transition and maturation phases of the amelogenesis process. Consumption of saltwater fish is predicted to increase the expression of amelogenin and ALP in ameloblast cells during tooth formation. Only now have the function of each gene, tooth-forming cells, and the proteins they produce in the biomolecular amelogenesis of tooth enamel, which began during prenatal development, been clarified. Purpose: This study aims to determine how saltwater fish powder affects the ability of mother mice to increase the expression of amelogenin and ALP in cell ameloblast. Methods: Using a completely randomized design, this study was experimental and aimed to examine the effects of sardine (Sardinella fimbriata), splendid ponyfish (Leiognathus splendens), and tuna (Euthynnus affinis) powder. As samples, twenty-four female mice (Mus musculus) were used. Two groups of mice were created: group 1 (2.14 mg/0.5 ml) and the control group. The expression of amelogenin and ALP was determined using immunohistochemistry (IHC) and t-test (p0.05). Results: Expression of ameloblast was significantly different between the treatment and control groups (p0.05). Conclusion: The consumption of saltwater fish reduces the amelogenin and ALP expressions of mouse fetal ameloblast cells during tooth development in vivo.
Downloads
Dean J. McDonald and Avery's dentistry for the child and adolescent. 11th ed. St Louis: Mosby Elsevier; 2021. p. 752. web: https://www.elsevier.com/books/mcdonald-and-avery%27s-dentistry-for-the-child-and-adolescent/978-0-323-69820-7
Hovorakova M, Lesot H, Peterka M, Peterkova R. Early development of the human dentition revisited. J Anat. 2018; 233(2): 135–45. doi: https://doi.org/10.1111/joa.12825
Putri WA, Christiono S, Fathurrahman H. The effect of consumption of marine fish nanoparticles on the hardness of teeth enamel in mice (Mus Musculus). J Kesehat Gigi. 2021; 8(2): 109–14. doi: https://doi.org/10.31983/jkg.v8i2.7611
Bartlett JD, Simmer JP. Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol. 2014; 5: 1–8. doi: https://doi.org/10.3389/fphys.2014.00240
Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci. 2020; 21(12): 4458. doi: https://doi.org/10.3390/ijms21124458
Wang X, Chiba Y, Jia L, Yoshizaki K, Saito K, Yamada A, Qin M, Fukumoto S. Expression patterns of Claudin family members during tooth development and the role of Claudin-10 (Cldn10) in Cytodifferentiation of stratum intermedium. Front Cell Dev Biol. 2020; 8: 595593. doi: https://doi.org/10.3389/fcell.2020.595593
Liu J, Saito K, Maruya Y, Nakamura T, Yamada A, Fukumoto E, Ishikawa M, Iwamoto T, Miyazaki K, Yoshizaki K, Ge L, Fukumoto S. Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation. Sci Rep. 2016; 6(1): 23670. doi: https://doi.org/10.1038/srep23670
Gondivkar SM, Gadbail AR, Gondivkar RS, Sarode SC, Sarode GS, Patil S, Awan KH. Nutrition and oral health. Disease-a-Month. 2019; 65(6): 147–54. doi: https://doi.org/10.1016/j.disamonth.2018.09.009
Christiono S, Pradopo S, Sudiana IK. The effect of saltwater fish consumption by female house mice (Mus Musculus) on the increasing teeth enamel density of their pups: MicroCT analysis. J Int Dent Med Res. 2019; 12(3): 947–52. pdf: http://www.jidmr.com/journal/wp-content/uploads/2019/10/18-D18_713_Seno_Pradopo.pdf
Wahluyo S. Peran kalsium sebagai prevensi terjadinya hipoplasia enamel (The role of calcium on enamel hypoplasia prevention). Dent J. 2013; 46(3): 113–8. doi: https://doi.org/10.20473/j.djmkg.v46.i3.p113-118
Brookes SJ, Barron MJ, Boot-Handford R, Kirkham J, Dixon MJ. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate. Hum Mol Genet. 2014; 23(9): 2468–80. doi: https://doi.org/10.1093/hmg/ddt642
Poulter JA, Brookes SJ, Shore RC, Smith CEL, Abi Farraj L, Kirkham J, Inglehearn CF, Mighell AJ. A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum Mol Genet. 2014; 23(8): 2189–97. doi: https://doi.org/10.1093/hmg/ddt616
Sudiana IK. Teknologi Ilmu Jaringan dan Imunohistokimia. Jakarta: Sagung Seto; 2005. p. 36–44. web: https://opac.perpusnas.go.id/DetailOpac.aspx?id=1121643
Hu JC-C, Hu Y, Lu Y, Smith CE, Lertlam R, Wright JT, Suggs C, McKee MD, Beniash E, Kabir ME, Simmer JP. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. van Wijnen A, editor. PLoS One. 2014; 9(3): e89303. doi: https://doi.org/10.1371/journal.pone.0089303
Lokappa SB, Chandrababu KB, Moradian-Oldak J. Tooth enamel protein amelogenin binds to ameloblast cell membrane-mimicking vesicles via its N-terminus. Biochem Biophys Res Commun. 2015; 464(3): 956–61. doi: https://doi.org/10.1016/j.bbrc.2015.07.082
Christiono S, Pradopo S, Sudiana IK. The effect of saltwater fish consumption by mother Mice (Mus Musculus) on the expressions of FABPs and type 1 collagen regarding increase in enamel density. J Int Dent Med Res. 2022; 15(4): 1535–40. pdf: http://www.jidmr.com/journal/wp-content/uploads/2022/12/20-D22_1967_Seno_Pradopo_Indonesia.pdf
Wu S, Zhai H, Zhang W, Wang L. Monomeric amelogenin's C-terminus modulates biomineralization dynamics of calcium phosphate. Cryst Growth Des. 2015; 15(9): 4490–7. doi: https://doi.org/10.1021/acs.cgd.5b00754
Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol. 2014; 5: 00477. doi: https://doi.org/10.3389/fphys.2014.00477
Dewi N, Syaify A, Wahyudi IA. Effect of gestational diabetes mellitus on the expression of amelogenin in rat offspring tooth germ. Dent J. 2013; 46(3): 135–9. doi: https://doi.org/10.20473/j.djmkg.v46.i3.p135-139
Habelitz S. Materials engineering by ameloblasts. J Dent Res. 2015; 94(6): 759–67. doi: https://doi.org/10.1177/0022034515577963
Bronckers ALJJ. Ion transport by ameloblasts during amelogenesis. J Dent Res. 2017; 96(3): 243–53. doi: https://doi.org/10.1177/0022034516681768
Ida-Yonemochi H, Otsu K, Ohshima H, Harada H. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development. Mech Dev. 2016; 139: 18–30. doi: https://doi.org/10.1016/j.mod.2016.01.002
Wahluyo S, Ismiyatin K, Purwanto B, Mukono IS. The influence of sodium fluoride on the growth of ameloblasts and kidney proximal tubular cells. Folia Biol (Praha). 2017; 63(1): 31–4. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/28374673
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020; 754: 144855. doi: https://doi.org/10.1016/j.gene.2020.144855
Al Nofal AA, Altayar O, BenKhadra K, Qasim Agha OQ, Asi N, Nabhan M, Prokop LJ, Tebben P, Murad MH. Bone turnover markers in Paget's disease of the bone: A Systematic review and meta-analysis. Osteoporos Int. 2015; 26(7): 1875–91. doi: https://doi.org/10.1007/s00198-015-3095-0
Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Riawan W, Rantam FA. Bone alkaline phosphatase and osteocalcin expression of rat's Gingival mesenchymal stem cells cultured in platelet-rich fibrin for bone remodeling (in vitro study). Eur J Dent. 2018; 12(04): 566–73. doi: https://doi.org/10.4103/ejd.ejd_261_18
Triwardhani A, Tjandra RR, Hamid T, Ariani TN. Correlations of alkaline phosphatase expression with osteoblast number during orthodontic tooth movement, in vivo. J Int Dent Med Res. 2022; 15(4): 1497–502. pdf: http://www.jidmr.com/journal/wp-content/uploads/2022/12/14-D22_1944_Thalca_Hamid_Tamara_Nitya_Ariani_Indonesia-1.pdf
Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017; 97(3): 939–93. doi: https://doi.org/10.1152/physrev.00030.2016
Sidaly R, Landin MA, Suo Z, Snead ML, Lyngstadaas SP, Reseland JE. Hypoxia increases the expression of enamel genes and cytokines in an ameloblast-derived cell line. Eur J Oral Sci. 2015; 123(5): 335–40. doi: https://doi.org/10.1111/eos.12201
Zhang H-Y, Liu R, Xing Y-J, Xu P, Li Y, Li C-J. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp Ther Med. 2013; 6(6): 1553–9. doi: https://doi.org/10.3892/etm.2013.1349
Pudyani PS, Asmara W, Ana ID, Utari TR. Alkaline phosphatase expression during relapse after orthodontic tooth movement. Dent J. 2014; 47(1): 25–30. doi: https://doi.org/10.20473/j.djmkg.v47.i1.p25-30
Hasib A, Wahjuningrum DA, Ibrahim MHR, Kurniawan HJ, Ernawati R, Hadinoto MEK, Mooduto L. ALP (Alkaline Phosphatase) expression in simple fracture incident in rat (Rattus Norvegicus) femur bone supplemented by Apis mellifera honey. J Int Dent Med Res. 2018; 11(3): 1636–9. pdf: http://www.jidmr.com/journal/wp-content/uploads/2020/09/10-D19_1023_Dian_Agustin_Wahjuningrum_Indonesia.pdf
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License