The effect of epigallocatechin gallate on Streptococcus Gordonii biofilm formation
Background: Dental caries, as a primary disease in dentistry, is strongly influenced by the presence of biofilms. One of the Gram-positive bacteria that acts as an initiator in the biofilm formation process is Streptococcus gordonii. As the primary catechin in green tea, epigallocatechin gallate (EGCG) is easily found in our daily lives, and it has a broad spectrum of antimicrobial effects. Several studies have revealed that EGCG inhibited the growth of Gram-positive bacteria, including inhibiting biofilm formation by damaging the bacterial cell wall and reducing glucosyltransferase activity. However, there is still limited information that explains the effect of EGCG on S. gordonii bacterial biofilms. Purpose: This study aims to analyze the effect of EGCG in inhibiting the formation of S. gordonii bacterial biofilms. Methods: This study was an in-vitro experimental laboratory study, with samples divided into five groups, namely, the group containing BHIB-bacteria, the BHIB-bacteria-5% sucrose groups, and the treatment groups containing BHIB-bacteria-5% sucrose-EGCG with concentrations of 12.5%, 6.25%, and 3.125%, respectively, incubated for 24 hours. The data was analyzed using the Kruskal–Wallis test. Results: There was a significant difference in the formation of biofilms in S. gordonii bacteria with the addition of 5% sucrose in BHIB compared with the group of S. gordonii bacteria in BHIB. The highest biofilm formation in the group containing bacteria-BHIB-5% sucrose, while the lowest biofilm formation occurred in the treatment group containing bacteria-BHIB-5% sucrose-12.5% EGCG with significant difference between the group. Conclusion: The addition of EGCG 12.5% inhibits the formation of S. gordonii biofilms.
Downloads
Wicaksono DP, Washio J, Abiko Y, Domon H, Takahashi N. Nitrite production from nitrate and its link with lactate metabolism in oral Veillonella spp. Appl Environ Microbiol. 2020; 86(20): e01255-20. doi:10.1128/AEM.01255-20
Dianawati N, Setyarini W, Widjiastuti I, Ridwan RD, Kuntaman K. The distribution of Streptococcus mutans and Streptococcus sobrinus in children with dental caries severity level. Dent J. 2020; 53(1): 36–9. doi:10.20473/j.djmkg.v53.i1.p36-39
Van Chuyen N, Van Du V, Van Ba N, Long DD, Son HA. The prevalence of dental caries and associated factors among secondary school children in rural highland Vietnam. BMC Oral Health. 2021; 21(1): 349. doi:10.1186/s12903-021-01704-y
Chen X, Daliri EB-M, Kim N, Kim J-R, Yoo D, Oh D-H. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens. 2020; 9(7): 569. doi:10.3390/pathogens9070569
Mosailova N, Truong J, Dietrich T, Ashurst J. Streptococcus gordonii : A rare cause of infective endocarditis. Case Rep Infect Dis. 2019; 2019: 7127848. doi:10.1155/2019/7127848
Toma S, Behets C, Brecx MC, Lasserre JF. In vitro comparison of the efficacy of peri-implantitis treatments on the removal and recolonization of Streptococcus gordonii biofilm on titanium disks. Materials (Basel). 2018; 11(12): 2484. doi:10.3390/ma11122484
Furquim dos Santos Cardoso V, Amaral Roppa RH, Antunes C, Silva Moraes AN, Santi L, Konrath EL. Efficacy of medicinal plant extracts as dental and periodontal antibiofilm agents: A systematic review of randomized clinical trials. J Ethnopharmacol. 2021; 281: 114541. doi:10.1016/j.jep.2021.114541
Nugraha AP, Narmada IB, Sitasari PI, Inayati F, Wira R, Triwardhani A, Hamid T, Ardani IGAW, Djaharu’ddin I, Rahmawati D, Iskandar RPD. High mobility group box 1 and heat shock protein-70 expression post (-)-Epigallocatechin-3-gallate in East Java green tea methanolic extract administration during orthodontic tooth movement in Wistar rats. Pesqui Bras Odontopediatria Clin Integr. 2020; 20: e5347. doi:10.1590/pboci.2020.040
Ramadhani Y, Rahmasari RRP, Prajnasari KN, Alhakim MM, Aljunaid M, Al-Sharani HM, Tantiana T, Juliastuti WS, Ridwan RD, Diyatri I. A mucoadhesive gingival patch with Epigallocatechin-3-gallate green tea (Camellia sinensis) as an alternative adjunct therapy for periodontal disease: A narrative review. Dent J. 2022; 55(2): 114–9. doi:10.20473/j.djmkg.v55.i2.p114-119
Ismiyatin K, Subiyanto A, Suhartono M, Sari PT, Widjaja OV, Sari RP. Efficacy of topical hydrogel Epigallocatechin-3-gallate against neutrophil cells in perforated dental pulp. Dent J. 2020; 53(2): 88–92. doi:10.20473/J.DJMKG.V53.I2.P88-92
Dai W, Ruan C, Zhang Y, Wang J, Han J, Shao Z, Sun Y, Liang J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J Funct Foods. 2020; 65: 103732. doi:10.1016/j.jff.2019.103732
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and antimicrobial activities of (-)-Epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Compr Rev Food Sci Food Saf. 2018; 17(3): 732–53. doi:10.1111/1541-4337.12346
Schneider-Rayman M, Steinberg D, Sionov RV, Friedman M, Shalish M. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study. BMC Oral Health. 2021; 21(1): 1–11. doi:10.1186/s12903-021-01798-4
Hairul Islam MI, Arokiyaraj S, Kuralarasan M, Senthil Kumar V, Harikrishnan P, Saravanan S, Ashok G, Chellappandian M, Bharanidharan R, Muralidaran S, Thirugnanasambantham K. Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent cariogenesis. Microb Pathog. 2020; 143: 104129. doi:10.1016/j.micpath.2020.104129
Hasan S, Danishuddin M, Khan AU. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: In vitro and in vivo studies. BMC Microbiol. 2015; 15(1): 1–14. doi:10.1186/s12866-014-0320-5
Wang X, Li X, Ling J. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans. J Basic Microbiol. 2017; 57(7): 605–16. doi:10.1002/jobm.201700010
Soekanto SA, Alatas SS, Ristanti R, Gultom FP, Sahlan M. Efficacy of propolis fluoride in inhibiting the formation of Streptoccocus mutans, Streptococcus gordonii, and Streptococcus sanguinis biofilm. In: AIP Conference Proceedings. 2019. p. 030008.
Scharnow AM, Solinski AE, Wuest WM. Targeting S. mutans biofilms: a perspective on preventing dental caries. Med Chem Comm. 2019; 10(7): 1057–67. doi:10.1039/C9MD00015A
Zubaidah N, Dianawati N, Ridwan RD, Shirakawa T, Kuntaman K, Setiawatie EM, Tanzil MI, Kunarti S. The clinical pattern and prevalence of Streptococcus mutans and Streptococcus sobrinus among adult and children patients with dental caries. Pesqui Bras Odontopediatria Clin Integr. 2022; 22: 1–11. doi:10.1590/pboci.2022.029
Li J, Wu T, Peng W, Zhu Y. Effects of resveratrol on cariogenic virulence properties of Streptococcus mutans. BMC Microbiol. 2020; 20(1): 1–11. doi:10.1186/s12866-020-01761-3
Zayed SM, Aboulwafa MM, Hashem AM, Saleh SE. Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express. 2021; 11: 73. doi:10.1186/s13568-021-01232-6
Cai J-N, Choi H-M, Jeon J-G. Relationship between sucrose concentration and bacteria proportion in a multispecies biofilm. J Oral Microbiol. 2021; 13: 1910443. doi:10.1080/20002297.2021.1910443
Maske TT, van de Sande FH, Arthur RA, Huysmans MCDNJM, Cenci MS. In vitro biofilm models to study dental caries: a systematic review. Biofouling. 2017; 33(8): 661–75. doi:10.1080/08927014.2017.1354248
Nuraini P, Pradopo S, Pronorahardjo AS. Sucrose and xylitol-induced Streptococcus mutans biofilm adherence. Pesqui Bras Odontopediatria Clin Integr. 2020; 20: 1–5. doi:10.1590/pboci.2020.035
Nuraini P, Moeharyono Puteri M, Pramesty E. Anti-biofilm activity of epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Res J Pharm Technol. 2021; 14(9): 5019–23. doi:10.52711/0974-360X.2021.00875
Bartosikova L, Necas J. Epigallocatechin gallate: A review. Vet Med (Praha). 2018; 63(10): 443–67. doi:10.17221/31/2018-VETMED
Han S, Abiko Y, Washio J, Luo Y, Zhang L, Takahashi N. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and mon-mutans Streptococci. Caries Res. 2021; 55(3): 205–14. doi:10.1159/000515814
Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019; 18(1): 241–72. doi:10.1007/s11101-018-9591-z
Tan J, Wang D, Cao H, Qiao Y, Zhu H, Liu X. Effect of local alkaline microenvironment on the behaviors of bacteria and osteogenic cells. ACS Appl Mater Interfaces. 2018; 10(49): 42018–29. doi:10.1021/acsami.8b15724
Copyright (c) 2024 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License