Single nucleotide polymorphisms: A paradigm in oral disease research
Downloads
Background: A higher occurrence of oral cancer is observed in South Asian and Southeast Asian countries when compared with other countries in the world. Cancer, a disease with complex pathophysiology, has been linked to chronic inflammation. Inflammation has been considered an important component of tumor initiation and progression. This is supported by the fact that many cancers arise at the sites of chronic inflammation, but the exact mechanism by which inflammation influences cancer is unknown. Purpose: This review article correlates single nucleotide polymorphisms (SNPs), chronic inflammation, and oral cancer. The article emphasizes the critical role that SNPs play in oral cancer susceptibility, progression, and prognosis. This involves discussing the impact of specific SNPs on oral cancer risk and patient outcomes. Review: Gene polymorphism has been documented in the molecular pathogenesis of various cancers, including oral cancer, and SNPs are the most common form of gene polymorphism. Genetic variation has been documented in the molecular pathogenesis of various cancers, including oral cancer, and SNPs are the most common form of gene polymorphism. SNPs have been documented in inflammatory conditions as well as in various diseases. Conclusion: SNPs have phenotypic consequences and therefore can serve as genetic fingerprints. The upregulation or downregulation of genes is able to drive oral carcinogenesis.
Downloads
Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V. Inflammation and cancer. Ann Afr Med. 2019; 18(3): 121–6. doi: https://doi.org/10.4103/aam.aam_56_18
Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 2019; 51(1): 27–41. doi: https://doi.org/10.1016/j.immuni.2019.06.025
Bosetti C, Carioli G, Santucci C, Bertuccio P, Gallus S, Garavello W, Negri E, La Vecchia C. Global trends in oral and pharyngeal cancer incidence and mortality. Int J Cancer. 2020; 147(4): 1040–9. doi: https://doi.org/10.1002/ijc.32871
Fan KM, Rimal J, Zhang P, Johnson NW. Stark differences in cancer epidemiological data between GLOBOCAN and GBD: Emphasis on oral cancer and wider implications. eClinicalMedicine. 2022; 54: 101673. doi: https://doi.org/10.1016/j.eclinm.2022.101673
Mashhadiabbas F, Fayazi-Boroujeni M. Correlation of vascularization and inflammation with severity of oral leukoplakia. Iran J Pathol. 2017; 12(3): 225–30. doi: https://doi.org/10.30699/ijp.2017.25044
Juneja S, Chaitanya Nb, Agarwal M. Immunohistochemical expression of Bcl-2 in oral epithelial dysplasia and oral squamous cell carcinoma. Indian J Cancer. 2015; 52(4): 505. doi: https://doi.org/10.4103/0019-509X.178411
Niklander SE. Inflammatory mediators in oral cancer: Pathogenic mechanisms and diagnostic potential. Front Oral Heal. 2021; 2: 642238. doi: https://doi.org/10.3389/froh.2021.642238
Patel J, Shah F, Joshi G, Patel P. Clinical significance of inflammatory mediators in the pathogenesis of oral cancer. J Cancer Res Ther. 2016; 12(2): 447. doi: https://doi.org/10.4103/0973-1482.147765
Sarode GS, Sarode SC, Patil A, Anand R, Patil SG, Rao RS, Augustine D. Inflammation and oral cancer: An update review on targeted therapies. J Contemp Dent Pract. 2015; 16(7): 595–602. doi: https://doi.org/10.5005/jp-journals-10024-1727
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019; 234(5): 5451–65. doi: https://doi.org/10.1002/jcp.27486
Goertzen C, Mahdi H, Laliberte C, Meirson T, Eymael D, Gil-Henn H, Magalhaes M. Oral inflammation promotes oral squamous cell carcinoma invasion. Oncotarget. 2018; 9(49): 29047–63. doi: https://doi.org/10.18632/oncotarget.25540
Eaton KD, Romine PE, Goodman GE, Thornquist MD, Barnett MJ, Petersdorf EW. Inflammatory gene polymorphisms in lung cancer susceptibility. J Thorac Oncol. 2018; 13(5): 649–59. doi: https://doi.org/10.1016/j.jtho.2018.01.022
Fernández-Mateos J, Seijas-Tamayo R, Adansa Klain J, Pastor Borgoñón M, Pérez-Ruiz E, Mesía R, del Barco E, Salvador Coloma C, Rueda Dominguez A, Caballero Daroqui J, Fernández Ruiz E, Ocana A, González-Sarmiento R, Cruz-Hernández J. Genetic susceptibility in head and neck squamous cell carcinoma in a spanish population. Cancers (Basel). 2019; 11(4): 493. doi: https://doi.org/10.3390/cancers11040493
Travers A, Muskhelishvili G. DNA structure and function. FEBS J. 2015; 282(12): 2279–95. doi: https://doi.org/10.1111/febs.13307
Song M-Y, Kim H-E, Kim S, Choi I-H, Lee J-K. SNP-based large-scale identification of allele-specific gene expression in human B cells. Gene. 2012; 493(2): 211–8. doi: https://doi.org/10.1016/j.gene.2011.11.058
Castellanos-Rubio A, Ghosh S. Disease-associated SNPs in inflammation-related lncRNAs. Front Immunol. 2019; 10: 420. doi: https://doi.org/10.3389/fimmu.2019.00420
Syvänen A-C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001; 2(12): 930–42. doi: https://doi.org/10.1038/35103535
Nash PA, Silva-Pinheiro P, Minczuk MA. Genotyping single nucleotide polymorphisms in the mitochondrial genome by pyrosequencing. J Vis Exp. 2023; (192). doi: https://doi.org/10.3791/64361
Sukhumsirichart W. Polymorphisms. In: Liu Y, editor. Genetic diversity and disease susceptibility. InTech; 2018. doi: https://10.5772/intechopen.76728
Matsuda K. PCR-based detection methods for single-nucleotide polymorphism or mutation. In: Advances in clinical chemistry. Elseiver; 2017. p. 45–72. doi: https://10.1016/bs.acc.2016.11.002
de Leeuw N, Hehir-Kwa JY, Simons A, Geurts van Kessel A, Smeets DF, Faas BHW, Pfundt R. SNP array analysis in constitutional and cancer genome diagnostics – copy number variants, genotyping and quality control. Cytogenet Genome Res. 2011; 135(3–4): 212–21. doi: https://doi.org/10.1159/000331273
Bozgeyik E, Bozgeyik I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene. 2023; 851: 147012. doi: https://doi.org/10.1016/j.gene.2022.147012
Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet. 2010; 86(6): 929–42. doi: https://doi.org/10.1016/j.ajhg.2010.05.002
Louhelainen J. SNP Arrays. Microarrays. 2016; 5(4): 27. doi: https://doi.org/10.3390/microarrays5040027
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9): 1297–303. doi: https://doi.org/10.1101/gr.107524.110
Mortazavi SS, Bahmanpour Z, Daneshmandpour Y, Roudbari F, Sheervalilou R, Kazeminasab S, Emamalizadeh B. An updated overview and classification of bioinformatics tools for MicroRNA analysis, which one to choose? Comput Biol Med. 2021; 134: 104544. doi: https://doi.org/10.1016/j.compbiomed.2021.104544
Clifford RJ, Edmonson MN, Nguyen C, Scherpbier T, Hu Y, Buetow KH. Bioinformatics tools for single nucleotide polymorphism discovery and analysis. Ann N Y Acad Sci. 2004; 1020(1): 101–9. doi: https://doi.org/10.1196/annals.1310.011
Mooney S. Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform. 2005; 6(1): 44–56. doi: https://doi.org/10.1093/bib/6.1.44
Aloka D, Padmakumar S, Sathyan S, Sebastian M, Banerjee M, Beena V. Association of matrix metalloproteinase 2 and matrix metalloproteinase 9 gene polymorphism in aggressive and nonaggressive odontogenic lesions: A pilot study. J Oral Maxillofac Pathol. 2019; 23(1): 158. doi: https://doi.org/10.4103/jomfp.JOMFP_2_17
Wang J, Lippman SM, Lee JJ, Yang H, Khuri FR, Kim E, Lin J, Chang DW, Lotan R, Hong WK, Wu X. Genetic variations in regulator of G-protein signaling genes as susceptibility loci for second primary tumor/recurrence in head and neck squamous cell carcinoma. Carcinogenesis. 2010; 31(10): 1755–61. doi: https://doi.org/10.1093/carcin/bgq138
Nakashima M, Kondo S, Shimizu Y, Wakisaka N, Murono S, Furukawa M, Yoshizaki T. Impact of MDM2 single nucleotide polymorphism on tumor onset in head and neck squamous cell carcinoma. Acta Otolaryngol. 2008; 128(7): 808–13. doi: https://doi.org/10.1080/00016480701724904
Dutta D, Abarna R, Mehatre S, Subbiah K, Duraisamy S, Chinnusamy R, Anbalagan M. Effect of Arg399Gln single-nucleotide polymorphism in XRCC1 gene on survival rate of Indian squamous cell head-and-neck cancer patients. J Cancer Res Ther. 2020; 16(3): 551–8. doi: https://doi.org/10.4103/jcrt.JCRT_476_18
Copyright (c) 2024 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License