Vitamin administration on orthodontic tooth movement animal model: A systematic review
Downloads
Background: Duration is a very important aspect of orthodontic treatment and is still challenging for orthodontists. Numerous studies investigating the effects of biological substances, including dietary supplements, on orthodontic tooth movement (OTM) rate indicate positive results. Efforts to improve the OTM rate can be classified into four main categories: biological, biomechanical, physical, and surgical. Numerous animal studies have evaluated the impact of biological substances on the rate of OTM, yielding positive outcomes compared to those not given biological substances. Purpose: This systematic review investigated the impact of dietary supplement delivery both locally and systemically on the rate of OTM. Methods: Nine databases were searched until January 31, 2023, for animal studies evaluating the effect of supplement administration on OTM. The Systematic Review Center for Laboratory Animal Experimentation’s (SYRCLE) risk of bias tools were employed. This review’s reporting adhered to the PRISMA guidelines. Results: Sixteen studies were identified for inclusion. Local injections of vitamin D exhibited variable effects. Vitamin C and zinc, as well as vitamin A, showed insignificant effects based on the OTM rate. Vitamin E showed conflicting results. Combined prostaglandin E2 (PGE2) and calcium can increase the OTM. Effects of systemic administrations of omega-3 fatty acids can decrease the OTM in vivo. Conclusion: The pace of tooth movement in animals may vary depending on the local or systemic administration of vitamins, as applied to OTM animal models.
Downloads
Krishnan V, Davidovitch Z. Biological basis of orthodontic tooth movement. In: Krishnan V, Kuijpers-Jagtman AM, Davidovitch Z, editors. Biological mechanisms of tooth movement. 3rd ed. Wiley; 2021. p. 1–15. doi: https://doi.org/10.1002/9781119608912.ch1
Asiry MA. Biological aspects of orthodontic tooth movement: A review of literature. Saudi J Biol Sci. 2018; 25(6): 1027–32. doi: https://doi.org/10.1016/j.sjbs.2018.03.008
Chiego DJ. Essentials of oral histology and embryology: a clinical approach. 5th ed. Elsevier; 2018. p. 1–195. web: https://shop.elsevier.com/books/essentials-of-oral-histology-and-embryology/chiego-jr/978-0-323-49725-1
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008; 3(Supplement_3): S131–9. doi: https://doi.org/10.2215/CJN.04151206
Monje A, Chan H, Galindo‐Moreno P, Elnayef B, Suarez‐Lopez del Amo F, Wang F, Wang H. Alveolar bone architecture: a systematic review and meta‐analysis. J Periodontol. 2015; 86(11): 1231–48. doi: https://doi.org/10.1902/jop.2015.150263
Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop. 2001; 119(3): 307–12. doi: https://doi.org/10.1067/mod.2001.110809
Li Y, Jacox LA, Little SH, Ko C-C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 2018; 34(4): 207–14. doi: https://doi.org/10.1016/j.kjms.2018.01.007
Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, Lai W. Interventions for accelerating orthodontic tooth movement. Angle Orthod. 2013; 83(1): 164–71. doi: https://doi.org/10.2319/031512-224.1
Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Does common prescription medication affect the rate of orthodontic tooth movement? A systematic review. Eur J Orthod. 2018; 40(6): 649–59. doi: https://doi.org/10.1093/ejo/cjy001
Fornaini C, Merigo E, Vescovi P, Lagori G, Rocca JP. Use of laser in orthodontics: applications and perspectives. Laser Ther. 2013; 22(2): 115–24. doi: https://doi.org/10.5978/islsm.13-OR-10
Santana LG, Duarte-Rodrigues L, Alves-Duarte AC, Galvão EL, Douglas-de-Oliveira DW, Marques LS, Falci SGM. Systematic review of biological therapy to accelerate orthodontic tooth movement in animals: Translational approach. Arch Oral Biol. 2020; 110: 104597. doi: https://doi.org/10.1016/j.archoralbio.2019.104597
Soans CR, Sebastian J, Gill G, Shersha S, Mansoor R, Mailankote S. Role of nutraceuticals from an orthodontic perspective - A review. Ann Rom Soc Cell Biol. 2021; 5(6): 281–294. web: http://annalsofrscb.ro/index.php/journal/article/view/5279
Iosub Ciur M-D, Zetu IN, Haba D, Viennot S, Bourgeois D, Andrian S. Evaluation of the influence of local administration of vitamin d on the rate of orthodontic tooth movement. Rev Med Chir Soc Med Nat Iasi. 2016; 120(3): 694–9. pubmed: https://pubmed.ncbi.nlm.nih.gov/30148332/
Seong C, Chen P-J, Kalajzic Z, Mehta S, Sharma A, Nanda R, Yadav S, Dutra EH. Vitamin E enriched diet increases the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2022; 161(5): 687-697.e3. doi: https://doi.org/10.1016/j.ajodo.2020.10.033
Ogrenim G, Cesur MG, Onal T, Kara M, Sirin FB, Yalcin GD, Inan S. Influence of omega‐3 fatty acid on orthodontic tooth movement in rats: A biochemical, histological, immunohistochemical and gene expression study. Orthod Craniofac Res. 2019; 22(1): 24–31. doi: https://doi.org/10.1111/ocr.12253
Seifi M. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003; 25(2): 199–204. doi: https://doi.org/10.1093/ejo/25.2.199
Seifi M, Hamedi R, Khavandegar Z. The effect of thyroid hormone, prostaglandin E2, and calcium gluconate on orthodontic tooth movement and root resorption in rats. J Dent (Shiraz, Iran). 2015; 16(1 Suppl): 35–42. pubmed: https://pubmed.ncbi.nlm.nih.gov/26106633/
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015; 4(1): 1. doi: https://doi.org/10.1186/2046-4053-4-1
Pieper D, Rombey T. Where to prospectively register a systematic review. Syst Rev. 2022; 11(1): 1–8. doi: https://doi.org/10.1186/s13643-021-01877-1
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14(1): 43. doi: https://doi.org/10.1186/1471-2288-14-43
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V. Cochrane handbook for systematic reviews of interventions. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Wiley; 2019. p. 1–694. doi: https://doi.org/10.1002/9781119536604
Khalaf RM, Almudhi AA. Effects of vitamin D deficiency on the rate of orthodontic tooth movement: An animal study. Saudi Dent J. 2022; 34(2): 129–35. doi: https://doi.org/10.1016/j.sdentj.2021.12.008
Bolat E, Esenlik E, Öncü M, Özgöçmen M, Avunduk MC, Yüksel Ö. Evaluation of the effects of vitamins C and E on experimentalorthodontic tooth movement. J Dent Res Dent Clin Dent Prospects. 2020; 14(2): 131–7. doi: https://doi.org/10.34172/joddd.2020.0027
Tankura K, Chotprakaikiat W, Prasitsak T. Dose-dependent vitamin C supplementation enhances orthodontic tooth movement in Wistar rats. J Int Dent Med Res. 2021; 14(1): 145–50. web: http://www.jidmr.com/journal/wp-content/uploads/2021/03/23-E-D20_1311_Thanit_Prasitsak_Thailand.pdf
Nishio C, Rompré P, Moldovan F. Effect of exogenous retinoic acid on tooth movement and periodontium healing following tooth extraction in a rat model. Orthod Craniofac Res. 2017; 20(S1): 77–82. doi: https://doi.org/10.1111/ocr.12151
Akhoundi MSA, Ghazanfari R, Etemad-Moghadam S, Alaeddini M, Khorshidian A, Rabbani S, Shamshiri AR, Momeni N. Effect of supplementary zinc on orthodontic tooth movement in a rat model. Dental Press J Orthod. 2016; 21(2): 45–50. doi: https://doi.org/10.1590/2177-6709.21.2.045-050.oar
Morimoto YI, Yamaguchi K, Tanne K. Influence of dietary n-3 polyunsaturated fatty acid on experimental tooth movement in rats. Angle Orthod. 1999; 69(4): 365–71. pubmed: https://pubmed.ncbi.nlm.nih.gov/10456605/
Sufarnap E, Siregar D, Lindawati Y. Effect of vitamin E supplementation on orthodontic tooth movement in Wistar rats: a prelimary study. F1000Research. 2020; 9: 1093. doi: https://doi.org/10.12688/f1000research.25709.3
Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004; 22(6): 541–6. doi: https://doi.org/10.1007/s00774-004-0521-3
Moradinejad M, Yazdi M, Mard SA, Razavi SM, Shamohammadi M, Shahsanaei F, Rakhshan V. Efficacy of the systemic co-administration of vitamin D3 in reversing the inhibitory effects of sodium alendronate on orthodontic tooth movement: A preliminary experimental animal study. Am J Orthod Dentofac Orthop. 2022; 162(1): e17–27. doi: https://doi.org/10.1016/j.ajodo.2021.11.014
Gratton M-P, Londono I, Rompré P, Villemure I, Moldovan F, Nishio C. Effect of vitamin D on bone morphometry and stability of orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop. 2022; 162(6): e319–27. doi: https://doi.org/10.1016/j.ajodo.2022.08.019
Kale S, Kocadereli İ, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2004; 125(5): 607–14. doi: https://doi.org/10.1016/j.ajodo.2003.06.002
Ma J, Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Kanou K, Kishikawa A, Ichimura A, Mizoguchi I. Docosahexaenoic acid inhibits TNF-α-induced osteoclast formation and orthodontic tooth movement through GPR120. Front Immunol. 2022; 13: 929690. doi: https://doi.org/10.3389/fimmu.2022.929690
Maltha JC, Kuijpers-Jagtman AM. Mechanobiology of orthodontic tooth movement: An update. J World Fed Orthod. 2023; 12(4): 156–60. doi: https://doi.org/10.1016/j.ejwf.2023.05.001
Khalaf K, Mando M. Effect of drugs on orthodontic tooth movement in human beings: a systematic review of randomized clinical trials. Open Dent J. 2019; 13(1): 22–32. doi: https://doi.org/10.2174/1874210601913010022
Hisham PNBMB, Narmada IB, Alida A, Rahmawati D, Nugraha AP, Putranti NAR. Effects of vitamin D in alveolar bone remodeling on osteoblast numbers and bone alkaline phosphatase expression in pregnant rats during orthodontic tooth movement. J Orofac Sci. 2019; 11(2): 79. doi: https://doi.org/10.4103/jofs.jofs_10_19
Nareswari RAAR, Narmada IB, Djaharu’ddin I, Rahmawati D, Putranti NAR, Nugraha AP. Effect of vitamin D administration on vascular endothelial growth factor expression and angiogenesis number in orthodontic tooth movement of pregnant Wistar rat. J Postgrad Med Inst. 2019; 33(3): 182–8. web: https://jpmi.org.pk/index.php/jpmi/article/view/2527/2344
Camacho AD. Dental movement acceleration: Literature review by an alternative scientific evidence method. World J Methodol. 2014; 4(3): 151. doi: https://doi.org/10.5662/wjm.v4.i3.151
van Driel M, van Leeuwen JPTM. Vitamin D and bone: A story of endocrine and auto/paracrine action in osteoblasts. Nutrients. 2023; 15(3): 480. doi: https://doi.org/10.3390/nu15030480
Shetty A, Patil AK, Ameet R., Sandhu PK. Local infiltration of Vitamin D 3 does not accelerate orthodontic tooth movement in humans: A preliminary study. Angle Orthod. 2015; : 150602064748001. doi: https://doi.org/10.2319/122214-935.1
Tashkandi N, Zhao Y, Mitchell-Lee G, Stephens D, Patel M, Motro M, Will LA, Kantarci A. Longitudinal assessment of salivary vitamin D binding protein during orthodontic tooth movement. BMC Oral Health. 2021; 21(1): 332. doi: https://doi.org/10.1186/s12903-021-01689-8
Sahibdad I, Khalid S, Chaudhry GR, Salim A, Begum S, Khan I. Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells. World J Stem Cells. 2023; 15(7): 751–67. doi: https://doi.org/10.4252/wjsc.v15.i7.751
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. Int J Environ Res Public Health. 2023; 20(3): 2197. doi: https://doi.org/10.3390/ijerph20032197
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. Materials (Basel). 2020; 13(10): 2211. doi: https://doi.org/10.3390/ma13102211
Khamlich K, Bouchghel L, Bourzgui F, Quars F El. The Physiological and Pharmaceutical Aspects of the Orthodontic Tooth Movement. OALib. 2023; 10(05): 1–14. doi: https://doi.org/10.4236/oalib.1109354
Alam MK, Abutayyem H, Alswairki HJ, Hajeer MY, Alogaibi YA. A systematic review and meta-analysis of the role of nutrition and its impact on orthodontic treatment/management. J Orthod Sci. 2023; 12: 41. doi: https://doi.org/10.4103/jos.jos_85_23
Keerthana P, Mukhopadhyay M, Verma S, Chitra P. Effect of Altered Calcium Metabolism on Orthodontic Tooth Movement: a Systematic Review. 2022; 17(1): 1051. doi: https://doi.org/10.22034/IJO.2022.549955.1051.Review
Tinawi M. Disorders of Calcium Metabolism: Hypocalcemia and Hypercalcemia. Cureus. 2021; 13(1): e12420. doi: https://doi.org/10.7759/cureus.12420
Azuma MM, Gomes-Filho JE, Ervolino E, Pipa CB, Cardoso C de BM, Andrada AC, Kawai T, Cintra LTA. Omega 3 Fatty Acids Reduce Bone Resorption While Promoting Bone Generation in Rat Apical Periodontitis. J Endod. 2017; 43(6): 970–6. doi: https://doi.org/10.1016/j.joen.2017.01.006
Suparwitri S, Pudyani PS, Haryana SM, Agustina D. Effects of soy isoflavone genistein on orthodontic tooth movement in guinea pigs. Dent J (Majalah Kedokt Gigi). 2016; 49(3): 168–74. doi: https://doi.org/10.20473/j.djmkg.v49.i3.p168-174
Prameswari N, Brahmanta A. The role of active ingredients nanopowder Stichopus hermanii gel to bone resorption in tension area of orthodontic tooth movement. Dent J (Majalah Kedokt Gigi). 2017; 50(4): 188. doi: https://doi.org/10.20473/j.djmkg.v50.i4.p188-193
Triwardhani A, Narmada IB, Hayati F, Djaharuddin I, Nugraha AP, Rahmawati D. The effectiveness of vitamin d provision on the expression of fibroblast growth factor-2 under the orthodontic mechanical stress in pregnant Wistar rat (Rattus Norvegicus). Biochem Cell Arch. 2020; 20(2): 5311–4. web: https://connectjournals.com/03896.2020.20.5311
Indriana T, Rubianto M, Indrawati M. Powdered anchovy (Stolephorus sp) results in higher osteoblast counts in the tension area of orthodontic tooth movement in Wistar Rats. Jordan J Pharm Sci. 2018; 11(1): 9–13. web: https://archives.ju.edu.jo/index.php/jjps/article/view/14704
Arnanda BB, Suparwitri S, Pudyani PS. Effect of caffeine in chocolate (Theobroma cacao) on the alveolar bone mineral density in guinea pigs (Cavia cobaya) with orthodontic tooth movement. Dent J. 2020; 53(3): 164–9. doi: https://doi.org/10.20473/j.djmkg.v53.i3.p164-169
Sari SP, Lubis MM, Yusuf M. Labial and palatal alveolar bone changes during maxillary incisor retraction at the Universitas Sumatera Utara Dental Hospital. Dent J. 2022; 55(3): 148–53. doi: https://doi.org/10.20473/j.djmkg.v55.i3.p148-153
Copyright (c) 2025 Dental Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License