Effect of tooth graft particle size on the healing process of femur defects in Wistar rat (Rattus norvegicus)
Downloads
Background: Teeth have potential as bone graft materials because of their organic and inorganic components that can stimulate osteoinduction, osteoconduction, and osteogenesis. An important success indicator of treatment using this graft material is the formation of osteoblast and new blood vessels in the applied area. Purpose: To investigate the number of osteoblast, osteoclast, and new blood vessels in bone healing after the implantation of tooth-derived bone graft materials measuring 20, 40, and 60 mesh. Methods: Thirty-six Wistar rats with a 2 mm defect on the right femoral dextra condile were divided into four groups. P0 (n=9) was the control group, where the defect was not filled by any material. In the other groups, the defects were filled by 20-mesh (P1; n=9), 40-mesh (P2; n=9), and 60-mesh (P3; n=9) tooth graft material. The Wistar rats were sacrificed after 2 weeks, and then the preparations were hematoxylin eosin staining. The data were analyzed using one-way analysis of variance and Tukey’s post hoc test. Results: The highest number of osteoblast was in the P3 group with a mean of 49.67, highest number of new blood vessels in the P2 group with a mean of 39.89, and highest number of osteoclast in the P1 group with a mean of 20.44. Statistical analysis showed a significant difference in the number of new blood vessels, osteoclast, and osteoblast in each group (p=0.000; p<0.05). Conclusion: Particle size differences in tooth graft material affect osteogenesis and angiogenesis in the bone healing process.
Downloads
World Health Organization. Oral health. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health. Accessed 2024 Jan 28.
Badan Penelitian dan Pengembangan Kesehatan. Laporan nasional riset kesehatan dasar 2018. Jakarta: Kementerian Kesehatan Republik Indonesia; 2018. p. 156. web: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/
Saskianti T, Nugraha AP, Prahasanti C, Ernawati DS, Suardita K, Riawan W. Immunohistochemical analysis of stem cells from human exfoliated deciduous teeth seeded in carbonate apatite scaffold for the alveolar bone defect in Wistar rats (Rattus novergicus). F1000Research. 2020; 9: 1164. doi:10.12688/f1000research.25009.2
Kresnoadi U, Salsabila N, Rahmania PN, Adventia PAC, Rahmani BS, Yoda N. Post-tooth extraction induction effect of Moringa oleifera leaf extract and demineralized freeze-dried bovine bone xenograft treatment on alveolar bone trabecula area. Dent J. 2023; 56(2): 127–31. doi:10.20473/j.djmkg.v56.i2.p127-131
Prahasanti C, Nugraha AP, Saskianti T, Suardita K, Riawan W, Ernawati DS. Exfoliated human deciduous tooth stem cells incorporating carbonate apatite scaffold enhance BMP-2, BMP-7 and attenuate MMP-8 expression during initial alveolar bone remodeling in Wistar rats (Rattus norvegicus). Clin Cosmet Investig Dent. 2020; 12: 79–85. doi:10.2147/CCIDE.S245678
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules. 2021; 26(10): 3007. doi: https://doi.org/10.3390/molecules26103007
Kheirallah M, Almeshaly H. Bone Graft Substitutes for Bone Defect Regeneration. A Collective Review. Int J Dent Oral Sci. 2016; 3(5): 247–55. doi: https://doi.org/10.19070/2377-8075-1600051
Taufik A, Zuhan A, Kusdaryono S, Rohadi R. Karakterisasi hydroxyapatite alami yang dibuat dari tulang sapi dan cangkang telur sebagai bahan untuk donor tulang (bone graft). Unram Med J. 2017; 6(1): 9–13. doi: https://doi.org/10.29303/jku.v6i1.33
Park S-M, Um I-W, Kim Y-K, Kim K-W. Clinical application of auto-tooth bone graft material. J Korean Assoc Oral Maxillofac Surg. 2012; 38(1): 2. doi: https://doi.org/10.5125/jkaoms.2012.38.1.2
Kim Y-K, Lee J, Um I-W, Kim K-W, Murata M, Akazawa T, Mitsugi M. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013; 39(3): 103–11. doi: https://doi.org/10.5125/jkaoms.2013.39.3.103
Kim Y-K, Kim S-G, Yun P-Y, Yeo I-S, Jin S-C, Oh J-S, Kim H-J, Yu S-K, Lee S-Y, Kim J-S, Um I-W, Jeong M-A, Kim G-W. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 117(1): e39–45. doi: https://doi.org/10.1016/j.oooo.2012.04.018
Pascawinata A, Prihartiningsih P, Dwirahardjo B. Perbandingan proses penyembuhan tulang antara implantasi hidroksiapatit nanokristalin dan hidroksiapatit mikrokristalin (Kajian pada tulang tibia kelinci). B-Dent J Kedokt Gigi Univ Baiturrahmah. 2018; 1(1): 1–10. doi: https://doi.org/10.33854/JBDjbd.45
Ebrahimi M. Bone grafting substitutes in dentistry: general criteria for proper selection and successful application. IOSR J Dent Med Sci. 2017; 16(4): 75–9. doi: https://doi.org/10.9790/0853-1604037579
Kumar N, Miraclin AT, Gunasekaran K, Veeraraghavan B. Invasive listeriosis: molecular determinants of virulence and antimicrobial resistance. J Glob Infect Dis. 2022; 14(3): 125–7. doi: https://doi.org/10.4103/jgid.jgid_94_22
Mustafida RY, Munawir A, Dewi R. Efek antiangiogenik ekstrak etanol buah mahkota dewa (Phaleria macrocarpa (Scheff.) Boerl.) pada membran korio alantois (CAM) embrio ayam. e-Jurnal Pustaka Kesehat. 2014; 2(1): 4–8. web: https://jpk.jurnal.unej.ac.id/index.php/JPK/article/view/587
Raymaekers K, Stegen S, van Gastel N, Carmeliet G. The vasculature: a vessel for bone metastasis. Bonekey Rep. 2015; 4: 742. doi: https://doi.org/10.1038/bonekey.2015.111
Hilmy N, Abbas B, Anas F. Validation for processing and irradiation of freeze-dried bone grafts. In: Radiation in tissue banking. World Scientific; 2007. p. 219–35. doi: https://doi.org/10.1142/9789812708649_0016
Amelia F, Abbas B, Darwis D, Estuningsih S, Noviana D. Effects of bone types, particle sizes, and gamma irradiation doses in feline demineralized freeze-dried bone allograft. Vet World. 2020; 13(8): 1536–43. doi: https://doi.org/10.14202/vetworld.2020.1536-1543
Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012; 379(9827): 1728–38. doi: https://doi.org/10.1016/S0140-6736(12)60282-7
Han S-K. Innovations and advances in wound healing. Berlin, Heidelberg: Springer; 2016. p. 287. doi: https://doi.org/10.1007/978-3-662-46587-5
Nam J-W, Kim M-Y, Han S-J. Cranial bone regeneration according to different particle sizes and densities of demineralized dentin matrix in the rabbit model. Maxillofac Plast Reconstr Surg. 2016; 38(1): 27. doi: https://doi.org/10.1186/s40902-016-0073-1
Nirwana I, Munadziroh E, Yuliati A, Fadhila AI, Nurliana, Wardhana AS, Shariff KA, Surboyo MDC. Ellagic acid and hydroxyapatite promote angiogenesis marker in bone defect. J Oral Biol Craniofacial Res. 2022; 12(1): 116–20. doi: https://doi.org/10.1016/j.jobcr.2021.11.008
Mukherjee P, Harwansh R, Bahadur S, Banerjee S, Kar A. Evidence based validation of Indian traditional medicine – Way forward. World J Tradit Chinese Med. 2016; 2(1): 48. doi: https://doi.org/10.15806/j.issn.2311-8571.2015.0018
Pafumi I, Favia A, Gambara G, Papacci F, Ziparo E, Palombi F, Filippini A. Regulation of angiogenic functions by angiopoietins through calcium-dependent signaling pathways. Biomed Res Int. 2015; 2015: 1–14. doi: https://doi.org/10.1155/2015/965271
Kim Y-K, Kim S-G, Byeon J-H, Lee H-J, Um I-U, Lim S-C, Kim S-Y. Development of a novel bone grafting material using autogenous teeth. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2010; 109(4): 496–503. doi: https://doi.org/10.1016/j.tripleo.2009.10.017
Kumala ELC, Fauzia M, Junivianti HS. The effect of nanoparticle tooth grafts on osteoblast stimulation in the first stages of the bone healing process in Wistar rats compared to the micro-tooth graft technique. Dent J. 2023; 56(3): 184–8. doi: https://doi.org/10.20473/j.djmkg.v56.i3.p184-188
Wadhwa P, Lee JH, Zhao BC, Cai H, Rim J-S, Jang H-S, Lee E-S. Microcomputed tomography and histological study of bone regeneration using tooth biomaterial with BMP-2 in rabbit calvarial defects. Jin G, editor. Scanning. 2021; 2021: 6690221. doi: https://doi.org/10.1155/2021/6690221
Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015; 28(1): 57–71. doi: https://doi.org/10.3967/bes2015.006
Malinin TI, Temple HT, Garg AK. Bone allografts in dentistry: a review. Dentistry. 2014; 4(2): 199. doi: https://doi.org/10.4172/2161-1122.1000199
Vidyahayati IL, Dewi AH, Ana ID. Pengaruh substitusi tulang dengan hidroksiapatit (HAp) terhadap proses remodeling tulang. Media Med Muda. 2016; 1(3): 157–64. web: https://ejournal2.undip.ac.id/index.php/mmm/article/view/2608
Kamadjaja MJK, Gatia ANS, Novitananda A, Maudina L, Laksono H, Dahlan A, Tumali BAS, Ari MDA. Evaluation of osteogenic properties after application of hydroxyapatite-based shells of Portunus pelagicus. Dent J. 2021; 54(3): 119–23. doi: https://doi.org/10.20473/j.djmkg.v54.i3.p119-123
Schmid F, Kleinhans C, Schmid F, Kluger P. Osteoclast formation within a human co-culture system on bone material as an in vitro model for bone remodeling processes. J Funct Morphol Kinesiol. 2018; 3(1): 17. doi: https://doi.org/10.3390/jfmk3010017
Copyright (c) 2025 Dental Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License