Potential of Bombyx mori fibroin peptide as an inhibitor of BMP2 and TGFB1 in the treatment of pulp tissue damage
Downloads
Background: Silk from Bombyx mori, a species of silkworm, contains fibroin, which has good biocompatibility and is potentially suitable for medical applications, especially in the treatment of tissue damage. Purpose: This study evaluated the potential interaction of B. mori fibroin peptides with bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 1 (TGFB1), which are protein markers for dentine reparative activity. Methods: The research was carried out in silico. The three-dimensional structure of the proteins was obtained from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and the antimicrobial potential of fibroin was evaluated using Antimicrobial Peptide Scanner v.1, the Collection of Anti-Microbial Peptides (CAMPR3), PeptideRanker, ToxinPred, AlgPred, and AllergenFP. Molecular modeling and analysis were performed with trRosetta, PrankWeb, the HDOCK server, and Discovery Studio. Results: The light chain 1 peptide (LC1), light chain 2 peptide (LC2), heavy chain 2 (HC2), and heavy chain 7 (HC7) showed high binding affinity to BMP2, while LC2, HC1, HC3, and HC6 showed high binding affinity to TGFB1 compared to silicic acid as a standard anti-inflammatory drug. Conclusion: These seven peptides can potentially interact with BMP2 or TGFB1 and might have anti-inflammatory capability.
Downloads
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011; 121(7): 2750–67. doi: https://doi.org/10.1172/JCI45014
Vidya M, Rajagopal S. Silk fibroin: a promising tool for wound healing and skin regeneration. Int J Polym Sci. 2021; 2021: 1–10. doi: https://doi.org/10.1155/2021/9069924
Sergi R, Bellucci D, Cannillo V. A review of bioactive glass/natural polymer composites: state of the art. Materials (Basel). 2020; 13(23): 5560. doi: https://doi.org/10.3390/ma13235560
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013; 65(4): 457–70. doi: https://doi.org/10.1016/j.addr.2012.09.043
You R, Zhang Q, Li X, Yan S, Luo Z, Qu J, Li M. Multichannel bioactive silk nanofiber conduits direct and enhance axonal regeneration after spinal cord injury. ACS Biomater Sci Eng. 2020; 6(8): 4677–86. doi: https://doi.org/10.1021/acsbiomaterials.0c00698
Mazurek Ł, Szudzik M, Rybka M, Konop M. Silk fibroin biomaterials and their beneficial role in skin wound healing. Biomolecules. 2022; 12(12): 1852. doi: https://doi.org/10.3390/biom12121852
Yun J, Lee J, Cha S-Y, Maeng S, Noh JK, Nam D-E, Stohs SJ. Mechanistic and efficacy study on effects of fibroin enzymatic hydrolysate (FEH) on memory and learning impairments induced by scopolamine in mice. Altern Complement Integr Med. 2021; 7(2): 1–8. doi: https://doi.org/10.24966/ACIM-7562/100160
Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016; 4(1): 16009. doi: https://doi.org/10.1038/boneres.2016.9
Chen G, Deng C, Li Y. TGF- β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012; 8(2): 272–88. doi: https://doi.org/10.7150/ijbs.2929
Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009; 9(4): 447–53. doi: https://doi.org/10.1016/j.coph.2009.04.008
Marincola Smith P, Means A, Beauchamp R. Immunomodulatory effects of TGF-β family signaling within intestinal epithelial cells and carcinomas. Gastrointest Disord. 2019; 1(2): 290–300. doi: https://doi.org/10.3390/gidisord1020024
Chakraborty A, Mukherjee P, Chakraborty M, Kumar Singha D. An updated review on bioinformatics and pharmacogenomics in drug discovery and development process. Asian J Pharm Res Dev. 2021; 9(3): 62–5. doi: https://doi.org/10.22270/ajprd.v9i3.942
Makiyah SNN, Christina YI, Ahkam AH. Dioscorea alata extract as anti-cancer agent by regulating genetic mutations, apoptosis, and cell proliferation: in vitro and in silico studies. Sains Malaysiana. 2023; 52(9): 2657–71. doi: https://doi.org/10.17576/jsm-2023-5209-15
Yang Z, Liang X, Fu Y, Liu Y, Zheng L, Liu F, Li T, Yin X, Qiao X, Xu X. Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine. 2019; 47: 44–57. doi: https://doi.org/10.1016/j.ebiom.2019.08.013
Makiyah SNN, Puspita S. Ovalbumin’s potential as a wound-healing medicament in tooth extraction socket by induction of cell proliferation through the ERK2 pathway in silico. Dent J. 2023; 56(3): 144–53. doi: https://doi.org/10.20473/j.djmkg.v56.i3.p144-153
Rahayu YC, Setiawatie EM, Rahayu RP, Ramadan DE. Analysis of antioxidant and antibacterial activity of cocoa pod husk extract (Theobroma cacao L.). Dent J. 2023; 56(4): 220–5. doi: https://doi.org/10.20473/J.DJMKG.V56.I4.P220-225
Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, Sleiman MSB, Ribeiro DM, Bandinelli S, Tanaka T, Nauck M, Völker U, Delaneau O, Metspalu A, Teumer A, Frayling T, Santoni FA, Reymond A, Kutalik Z. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nat Commun. 2021; 12(1): 5647. doi: https://doi.org/10.1038/s41467-021-25805-y
Navamajiti N, Gardner A, Cao R, Sugimoto Y, Yang JW, Lopes A, Phan N V, Collins J, Hua T, Damrongsakkul S, Kanokpanont S, Steiger C, Reker D, Langer R, Traverso G. Silk fibroin-based coatings for pancreatin-dependent drug delivery. J Pharm Sci. 2024; 113(3): 718–24. doi: https://doi.org/10.1016/j.xphs.2023.09.001
Sari DS, Maduratna E, Ferdiansyah F, Sudiana IK, Rantam FA. Cytotoxicity test and characteristics of demineralized dentin matrix scaffolds in adipose-derived mesenchymal stem cells of rats. Dent J. 2018; 51(4): 194–9. doi: https://doi.org/10.20473/j.djmkg.v51.i4.p194-199
Widjiastuti I, Suardita K, Saraswati W. The expressions of NF-kb and TGFb-1 on odontoblast-like cells of human dental pulp injected with propolis extracts. Dent J (Majalah Kedokt Gigi). 2014; 47(1): 13. doi: https://doi.org/10.20473/j.djmkg.v47.i1.p13-18
Rhee SY. Bioinformatics. Current limitations and insights for the future. Plant Physiol. 2005; 138(2): 569–70. doi: https://doi.org/10.1104/pp.104.900153
Veltri D, Kamath U, Shehu A. Deep learning improves antimicrobial peptide recognition. Hancock J, editor. Bioinformatics. 2018; 34(16): 2740–7. doi: https://doi.org/10.1093/bioinformatics/bty179
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMP R3 : a database on sequences, structures and signatures of antimicrobial peptides: table 1. Nucleic Acids Res. 2016; 44(D1): D1094–7. doi: https://doi.org/10.1093/nar/gkv1051
Mooney C, Haslam NJ, Pollastri G, Shields DC. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. Kurgan L, editor. PLoS One. 2012; 7(10): e45012. doi: https://doi.org/10.1371/journal.pone.0045012
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. Patterson RL, editor. PLoS One. 2013; 8(9): e73957. doi: https://doi.org/10.1371/journal.pone.0073957
Saha S, Raghava GPS. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006; 34(Web Server): W202–9. doi: https://doi.org/10.1093/nar/gkl343
Dimitrov I, Naneva L, Doytchinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014; 30(6): 846–51. doi: https://doi.org/10.1093/bioinformatics/btt619
Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021; 16(12): 5634–51. doi: https://doi.org/10.1038/s41596-021-00628-9
Keller S, Nickel J, Zhang J-L, Sebald W, Mueller TD. Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol. 2004; 11(5): 481–8. doi: https://doi.org/10.1038/nsmb756
Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, Engen JR, Springer TA. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017; 542(7639): 55–9. doi: https://doi.org/10.1038/nature21035
Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated protein–protein docking. Nat Protoc. 2020; 15(5): 1829–52. doi: https://doi.org/10.1038/s41596-020-0312-x
Roberts PR, Burney JD, Black KW, Zaloga GP. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion. 1999; 60(4): 332–7. doi: https://doi.org/10.1159/000007679
Kulikova OI, Stvolinsky SL, Migulin VA, Andreeva LA, Nagaev IY, Lopacheva OM, Kulichenkova KN, Lopachev A V, Trubitsina IE, Fedorova TN. A new derivative of acetylsalicylic acid and carnosine: synthesis, physical and chemical properties, biological activity. DARU J Pharm Sci. 2020; 28(1): 119–30. doi: https://doi.org/10.1007/s40199-019-00323-x
Yeasmin F, Choi HW. Natural salicylates and their roles in human health. Int J Mol Sci. 2020; 21(23): 9049. doi: https://doi.org/10.3390/ijms21239049
Wu S, Liu X, Cheng L, Wang D, Qin G, Zhang X, Zhen Y, Wang T, Sun Z. Protective mechanism of leucine and isoleucine against H2O2-induced oxidative damage in bovine mammary epithelial cells. Ramos-Tovar E, editor. Oxid Med Cell Longev. 2022; 2022(1): 4013575. doi: https://doi.org/10.1155/2022/4013575
Tsuda Y, Iwasawa K, Yamaguchi M. Acute supplementation of valine reduces fatigue during swimming exercise in rats. Biosci Biotechnol Biochem. 2018; 82(5): 856–61. doi: https://doi.org/10.1080/09168451.2018.1438168
Kim E-D, Bayaraa T, Shin E-J, Hyun C-K. Fibroin-derived peptides stimulate glucose transport in normal and insulin-resistant 3T3-L1 adipocytes. Biol Pharm Bull. 2009; 32(3): 427–33. doi: https://doi.org/10.1248/bpb.32.427
Igarashi K, Yoshioka K, Mizutani K, Miyakoshi M, Murakami T, Akizawa T. Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2006; 70(2): 517–20. doi: https://doi.org/10.1271/bbb.70.517
Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system. Drug Deliv. 2020; 27(1): 431–48. doi: https://doi.org/10.1080/10717544.2020.1736208
Kopp A, Smeets R, Gosau M, Friedrich RE, Fuest S, Behbahani M, Barbeck M, Rutkowski R, Burg S, Kluwe L, Henningsen A. Production and characterization of porous fibroin scaffolds for regenerative medical application. In Vivo. 2019; 33(3): 757–62. doi: https://doi.org/10.21873/invivo.11536
Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, Saleh H, Yu PB, Tawfik A, Ibrahim AS. Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative pathways in human retinal endothelial cells. Front Immunol. 2021; 11(January): 1–13. doi: https://doi.org/10.3389/fimmu.2020.568795
do Carmo Neto JR, Vinicius da Silva M, Braga YLL, Florencio da Costa AW, Fonseca SG, Nagib PRA, Nunes Celes MR, Oliveira MAP, Machado JR. Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi. PLoS One. 2021; 16(2): e0246692. doi: https://doi.org/10.1371/journal.pone.0246692
Hussein KA, Choksi K, Akeel S, Ahmad S, Megyerdi S, El-Sherbiny M, Nawaz M, Abu El-Asrar A, Al-Shabrawey M. Bone morphogenetic protein 2: A potential new player in the pathogenesis of diabetic retinopathy. Exp Eye Res. 2014; 125: 79–88. doi: https://doi.org/10.1016/j.exer.2014.05.012
Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, Ho S, Kim HJ, Ting K, Soo C. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 2013; 19(21–22): 2390–401. doi: https://doi.org/10.1089/ten.tea.2012.0519
Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010; 10(3): 170–81. doi: https://doi.org/10.1038/nri2711
Ruiz-Limon P, Cerdo-Raez T, Herencia C, Muñoz-Castañeda J, Jimenez-Gomez Y, Perez-Sanchez C, Carretero R, Barbarroja N, Lopez-Pedrera C, Escudero A, Collantes E. FRI0167 effect of infliximab and paricalcitol on inflammation and mineralization/calcification of mesenchymal stem cells during osteogenic differentiation. Ann Rheum Dis. 2014; 73: 442. doi: https://doi.org/10.1136/annrheumdis-2014-eular.5076
Zhu T, Zhang L, Ling S, Duan J, Qian F, Li Y, Xu J-W. Scropolioside B inhibits IL-1β and cytokines expression through NF-κB and inflammasome NLRP3 pathways. Mediators Inflamm. 2014; 2014: 1–10. doi: https://doi.org/10.1155/2014/819053
Gong Z, Zhou J, Li H, Gao Y, Xu C, Zhao S, Chen Y, Cai W, Wu J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS‐induced septic shock. Mol Nutr Food Res. 2015; 59(11): 2132–42. doi: https://doi.org/10.1002/mnfr.201500316
Hu X, Luo H, Dou C, Chen X, Huang Y, Wang L, Xue S, Sun Z, Chen S, Xu Q, Geng T, Zhao X, Cui H. Metformin triggers apoptosis and induction of the G0/G1 switch 2 gene in macrophages. Genes (Basel). 2021; 12(9): 1437. doi: https://doi.org/10.3390/genes12091437
Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo B-N. Regulation of microglia and macrophage polarization via apoptosis signal-regulating kinase 1 silencing after ischemic/hypoxic injury. Front Mol Neurosci. 2017; 10: 261. doi: https://doi.org/10.3389/fnmol.2017.00261
Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, Wu X, Wei X, Mani S, Wang Z. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014; 23(1): 170–8. doi: https://doi.org/10.1016/j.intimp.2014.08.025
Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001; 12(5): 425–37. doi: https://doi.org/10.1177/10454411010120050501
Yang J, Ye L, Hui T-Q, Yang D-M, Huang D-M, Zhou X-D, Mao JJ, Wang C-L. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. Int J Oral Sci. 2015; 7(2): 95–102. doi: https://doi.org/10.1038/ijos.2015.7
Oh SH, Hwang YC, Yang H, Kang JH, Hur SW, Jung NR, Jang WG, Lee KN, Oh WM, Park JC, Kim SH, Koh JT. SHP is involved in BMP2-induced odontoblast differentiation. J Dent Res. 2012; 91(12): 1124–9. doi: https://doi.org/10.1177/0022034512461916
Atalayin C, Tezel H, Dagci T, Yavasoglu NUK, Oktem G. Medium modification with bone morphogenetic protein 2 addition for odontogenic differentiation. Braz Oral Res. 2016; 30(1): 1–9. doi: https://doi.org/10.1590/1807-3107BOR-2016.vol30.0020
Cho Y-D, Yoon W-J, Woo K-M, Baek J-H, Park J-C, Ryoo H-M. The canonical BMP signaling pathway plays a crucial part in stimulation of dentin sialophosphoprotein expression by BMP-2. J Biol Chem. 2010; 285(47): 36369–76. doi: https://doi.org/10.1074/jbc.M110.103093
Neves VCM, Yianni V, Sharpe PT. Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis. Sci Rep. 2020; 10(1): 20216. doi: https://doi.org/10.1038/s41598-020-77161-4
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin matrix metalloproteinases: a futuristic approach toward dentin repair and regeneration. Cureus. 2022; 14(8): e27946. doi: https://doi.org/10.7759/cureus.27946
Copyright (c) 2025 Dental Journal (Majalah Kedokteran Gigi)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License