Escherichia Coli Infections, and Antimicrobial Resistance in Poultry Flocks, in North Central Nigeria
Downloads
To investigate Eschericiacoli infections in poultry flocks, 291 tissue samples from 237 necropsied carcasses submitted from ninety-nine (99) poultry flocks in north central Nigeria were analysed. These flocks comprised layer chicken, broiler, pullet, cockerel, turkey, quail, guinea fowl and ducks. Tissue samples were pre-enriched in 10 mL buffered peptone water media and aliquots were inoculated into selective enrichment broth, sub-cultured onEosin Methylene Blue (EMB) agar and MacConkey agar (MCA) and colonies of E. coli was examined based on cultural morphological characteristics. Layer poultry and laying quails exhibited reproductive lesions which correlates with history of disruption and reduction in egg production. Antibiotics resistance rate was significant (p <0.01) with macrolide and penicillin classes been the most resistant antibiotics in layers and broiler, while quinolones and aminoglycoside were most significantly susceptible (p <0.01). Multidrug resistance (MDR) was found in 56% of the E. coli isolates, with high prevalence in younger birds.
References
Adelowo, O.O., E.F. Obasola and A. Yvonne. 2014. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J. Infect. Dev. Ctries; 8:1103-1112.
Barnes, H.J., L.K. Nolan and J.F. Vaillancourt. 2008. Colibacillosis. In Saif, Y.M., A.M. Fadly, J.R. Glison, L.R. McDougald, L.K. Nolan and D.E. Swayne, 12th Ed. Diseases of Poultry. Blackwell publishing. Ames.
Blyton, M.D.J., H .Pi, B. Vangchhia, S. Abraham, D.J. Trott, J.R. Johnson and D.M. Gordon. 2015. Genetic structure and antimicrobial resistance of Escherichia coli and cryptic clades in birds with diverse human associations. Appl. Environ. Microbiol; 81:5123–5133.
Borgesa, C.A., L.G. Beraldoa, R.P. Malutab, M.V. Cardozoa, K.B. Barbozaa, E.A. Guastallic, S. Kariyawasamd, C. DebRoyc and F.A. Ávilaa. 2017. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital. Avian. Pathol; 46:76–83.
Borzi, M.M., M.V. Cardozo, E.S. Oliveira, A.S. Pollo, E.A.L. Guastalli, L.F. Santos and F.A. Ávila. 2018. Characterization of avian pathogenic Escherichia coli isolated from free-range helmeted guineafowl. Brazil J. Microbiol; 49:107-112.
Chakraborty, A., V. Saralaya, P. Adhikari, S. Shenoy, S. Baliga and A. Hegde. 2015. Characterization of Escherichia coli phylogenetic groups associated with extraintestinal infections in South Indian population. Ann. Med. Health Sci. Res; 5:241-246.
Clinical and Laboratory Standards Institute (CLSI), CLSI document M100-S22. 2012. Performance Standards for Antimicrobial Susceptibility Testing; 22nd Ed. Wayne, Pennsilvania.
Cole, D., D.J. Drum, D.E. Stalknecht, D.G. White, M.D. Lee, S. Ayers, M. Sobsey and J.J. Maurer. 2005. Free-living Canada geese and antimicrobial resistance. Emerg. Infect. Dis; 11:935–938.
Cunha, M.P.V., A.B. Saidenberg, A.M. Moreno, A.J.P. Ferreira, M.A.M. Vieira, T.A.T. Gomes and T. Knöbl. 2017. Pandemic extraintestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil. PLoS One; 12:1-11.
Cunha, M.P.V., M.C.V. Oliveira, M.G.X Oliveira, M.C. Mení£o and T. Knöbl. 2019. CTX-M-producing Escherichia coli isolated from urban pigeons (Columba livia domestica) in Brazil. J. Infect. Dev. Ctries; 13:1052-1056.
Cyoia, P.S., G.R. Rodrigues, E.K. Nishio, L.P. Medeiros, V.L. Koga, A.P.D. Pereira, E.C. Vespero, S. Houle, C.M. Dozois, G. Nakazato and R.K.T Kobayashi. 2015. Presence of virulence genes and pathogenicity islands in extraintestinal pathogenic Escherichia coli isolates from Brazil. J. Infect. Dev. Ctries; 9:1068-1075.
Diercke, M., M. Kirchner, K. Claussen, E. Mayr, I. Strotmann, J. Frangenberg, A. Schiffmann, G. Bettge-Weller, M. Arvand and H. Uphoff. 2014. Transmission of shiga toxin-producing Escherichia coli O104:H4 at a family party possibly due to contamination by a food handler, Germany 2011. Epidemiol. Infect; 142:99-106.
Dinidu, S.W., A.N. Chamings, R.N. Bushell, O' D. Rourke, M. Stevenson, M.S. Marenda, A.H. Noormohammadi and A. Stent. 2017. Pathological and microbiological investigations into cases of bacterial chondronecrosis and osteomyelitis in broiler poultry. Avian Pathol; 46:683-694.
Faife, S.L, Z. Tomas, J.O. Sekyere, U. Govinden, H.Y. Chenia, G.S. Simonsen, A. Sundsfjord and S.Y. Essack. 2020. β-lactam and fluoroquinolone resistance in Enterobacteriaceae from imported and locally produced chicken in Mozambique. J. Infect. Dev. Ctries; 14:471-478.
Frederick, A. 2020. Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana. Cogent Food & Agric 6: 1.
Geetha, M and K.M. Palanivel. 2018. Avian Colibacillosis - A Mini Review. Int J Pure App Biosci 6:376-380.
Ghodousi, A., Bonura, C., A.M. Di Noto and C. Mammina. 2015. Extended-spectrum íŸ-lactamase, AmpC-producing, and fluoroquinolone-resistant Escherichia coli in retail broiler chicken meat, Italy. Foodborne Pathog. Dis; 12:619–625.
Gosh, S and T.M. LaPara. 2007. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J; 1:191-203.
Guabiraba, R and C. Schouler. 2015. Avian colibacillosis: still many black holes. FEMS. Microbiol. Lett. 362:118.
Guenther, S., M. Grobbel, A. Lübke-Becker, A. Goedecke, N.D. Friedrich, L.H. Wieler and C. Ewers. 2010. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet. Microbiol; 144:219–225.
Heuer, H and K. Smalla. 2007. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol; 9:657-666.
Hoepers, P.G., P.L. Silva, D.A. Rossi, J.E.C. Valadares, B.C. Ferreira, J.P. Zuffo, P.K. Koerich and B.B. Fonseca. 2018. The association between extended spectrum beta-lactamase (ESBL) and ampicillin C (AmpC) beta-lactamase genes with multidrug resistance in Escherichia coli isolates recovered from turkeys in Brazil. Brit. Poult. Sci; 59:396-401.
Hubálek, Z. 2004. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. of Wild Dis; 40:639–659.
Ibrahim, R.A., Cryer, T.L., Lafi, S.Q., E. Basha, L. Good and Y.H. Tarazi. 2019. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res; 15: 159.
Kabir, S.M.L. 2010. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int. J. Environ. Res. Public Health; 7:89-114.
Laarem, M., B. Abouddihaj, N. Kaotar, A. Abdi, K. Zerouali, N. El Mdaghri and M. Timinouni. 2017. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria. J. Infect. Dev. Ctries; 11: 143-151.
Leverstein-van Hall, M.A., C.M. Dierik, S.J. Cohen, G.M. Voets, M.P. van den Munckhof, A. van Essen-Zandbergen, T. Platteel, A.C. Fluit, N. van de Sande-Bruinsma, J. Scharinga, M.J. Bonten and D.J. Mevius. 2011. National ESBL surveillance group. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. Dis; 17:873–880.
Logue, C.M., Y. Wannemuehler, B.A. Nicholson, C. Doetkott, N.L. Barbieri and L.K. Nolan. 2017. Comparative analysis of phylogenetic assignment of human and avian ExPEC and fecal commensal Escherichia coli using the (previous and revised) Clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Front. Microbiol. 8:283.
Marshall, B.M and S.B. Levy. 2011. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev; 24:718–733.
Oliveira, E.S., M.V. Cardozo, M.M. Borzi, C.A. Borges, E.A.L. Guastalli and F.A. Ávila. 2019. Highly pathogenic and multidrug resistant avian pathogenic Escherichia coli in free-range chickens from Brazil. Braz. J. Poult. Sci; 21:1-8.
Reich, F., V. Atanassova and G. Klein. 2013. Extended-spectrum βlactamase- and AmpC-producing enterobacteria in healthy broiler chickens, Germany. Emerg. Infect. Dis; 19:1253–1259.
Saka, H.K., N.T. Dabo, B. Muhammad, S. García-Soto, M. UgarteRuiz and J. Alvarez. 2019. Diarrheagenic Escherichia coli pathotypes from children younger than 5 years in Kano State, Nigeria. Front. Microbiol; 7: 34.
Silva, K.C., M.P.V. Cunha, L. Cerdeira, M.G.X. Oliveira, M.C.V. Oliveira, C.R. Gomes, N. Lincopan, T. Knöbl and A.M. Moreno. 2017. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from commercial turkeys. Diagn. Microbiol. Infect. Dis; 87:64-67.
Silveira, F., R.P. Maluta, M.R. Tiba, J.B. Paiva, E.A. Guastalli and W.D. Silveira. 2016. Comparison between avian pathogenic (APEC) and avian faecal (AFEC) Escherichia coli isolated from different regions in Brazil Vet. J; 217:65-67.
Stella, A.E., M.C. Oliveira, V.L.D.S. Fontana, R.P. Maluta, C.A. Borges and F.A. Ávila. 2016. Characterization and antimicrobial resistance patterns of Escherichia coli isolated from feces of healthy broiler chickens. Arq. Inst. Biol; 83:e0392014.
Todar, K. 2020. Bacterial resistance to antibiotics. Available online: http://textbookofbacteriology.net/resantimicrobial.html. Accessed 24 January 2022.
Tonini da Rocha, D., S.F. de Oliveira, K.A. Borges, T.Q. Furian, V.P. do Nascimento, H.L. de Souza Moraes and T.P.S. Carlos. 2021. Avian pathogenic Escherichia coli (APEC) and uropathogenic Escherichia coli (UPEC): characterization and comparison. J. Infect. Dev. Ctries; 15:962-971.
World Health Organisation (WHO). Tackling antibiotic resistance from a food safety perspective in Europe. Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/136454/ e94889.pdf. Accessed 12 December 2021.
Copyright (c) 2022 Olatunde Babatunde Akanbi, Dr Olorunshola, Peter, Eunice, Dr. Agada, Dr. Aiyedun, Dr Odita, Dr. Ola-Fadunsin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).