A Systematic Review of the Accuracy of Digital Applications in Calculating and Assessing Nutritional Status of Children Under Five Years
Background: The increasing utilization of digital applications to analyze the nutritional status of children under five years offers significant progress in public health. However, the accuracy and precision of these tools continue to be a concern due to variations in data quality and user proficiency.
Objectives: This study aims to systematically evaluate the accuracy and precision of digital applications in calculating and assessing the nutritional status of children under five years.
Methods: A comprehensive systematic review was conducted by searching PubMed, ScienceDirect, and Google Scholar databases for relevant studies published between 2010 and 2024. The PRISMA guidelines were followed to identify, screen, and select studies. Key aspects such as algorithm types, data input methods, and user proficiency were analyzed.
Results: The findings show that advanced algorithms, particularly K-Nearest Neighbor (K-NN) and other machine learning models, exhibit high accuracy when supported by quality data and adequate user training. Moreover, real-time IoT-based tools demonstrate high precision in nutritional assessments. Challenges remain in ensuring accurate data entry and algorithm updates to meet the needs of diverse populations.
Conclusions: Digital applications present promising accuracy and precision in evaluating the nutritional status of children under five. However, continuous improvement in data quality and user training is essential for optimal implementation in public health interventions.
Keywords: Child, Accuracy, Precision, Digital Application
De Oliveira MH, Gottsfritz IB, Lopes L, et al. NUTRICARE Application to Access Nutritional Status on Adults and Older People Combining Four Indicators (P16-052-19). Current Developments in Nutrition 2019;3:nzz050.P16-052-19; doi: 10.1093/cdn/nzz050.P16-052-19.
Rahmad AHA, Junaidi J, Fitrianingsih E, et al. Effectiveness of Using Android-Based Applications for Nutrition Monitoring of Toddlers in Banda Aceh. Open Access Macedonian Journal of Medical Sciences 2022;10(E):444–451; doi: 10.3889/oamjms.2022.7599.
Rinawan FR, Susanti AI, Amelia I, et al. Understanding mobile application development and implementation for monitoring Posyandu data in Indonesia: a 3-year hybrid action study to build “a bridge” from the community to the national scale. BMC Public Health 2021;21(1):1024; doi: 10.1186/s12889-021-11035-w.
Hairani H, Nurhayati L, Innuddin M. Web-Based Application for Toddler Nutrition Classification Using C4.5 Algorithm. IJECSA 2022;1(2):77–82; doi: 10.30812/ijecsa.v1i2.2387.
Sendari S, Widyaningtyas T, Maulidia NA. Classification of Toddler Nutrition Status with Anthropometry Using the K-Nearest Neighbor Method. In: 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE) 2019; pp. 1–5; doi: 10.1109/ICEEIE47180.2019.8981408.
Faza A, Rinawan FR, Mutyara K, et al. Posyandu Application in Indonesia: From Health Informatics Data Quality Bridging Bottom-Up and Top-Down Policy Implementation. Informatics 2022;9(4):74; doi: 10.3390/informatics9040074.
Fernandes T. Malnutrition and school feeding programmes. JNHFE 2018;8(5); doi: 10.15406/jnhfe.2018.08.00292.
Romero-Tapiador S, Tolosana R, Morales A, et al. AI4Food-NutritionFW: A Novel Framework for the Automatic Synthesis and Analysis of Eating Behaviours. 2023; doi: 10.48550/ARXIV.2309.06308.
Markus P. Beta Version of Child Growth Monitor Released Asap Due to Covid-19. n.d. Available from: https://www.welthungerhilfe.org/news/latest-articles/2020/early-release-of-child-growth-monitor [Last accessed: 9/6/2024].
Stutz T, Dinic R, Domhardt M, et al. Can Mobile Augmented Reality Systems Assist in Portion Estimation? A User Study. In: 2014 IEEE International Symposium on Mixed and Augmented Reality - Media, Art, Social Science, Humanities and Design (IMSAR-MASH’D) IEEE: Germany; 2014; pp. 51–57; doi: 10.1109/ISMAR-AMH.2014.6935438.
Santos CMDC, Pimenta CADM, Nobre MRC. The PICO strategy for the research question construction and evidence search. Rev Latino-Am Enfermagem 2007;15(3):508–511; doi: 10.1590/S0104-11692007000300023.
Rosari A, Julianto J, Larasati AD, et al. Developing a Nutritional Assessment Tool for Toddlers Using Anthropometry and IoT Technology. International Journal of Advanced Health Science and Technology 2024;4(2):67–71; doi: 10.35882/ijahst.v4i2.319.
Damar DPM, Sa’adah S, Wulandari GS. Classification of Toddler Nutritional Status Using Radial Basis Function Neural Network. In: 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) IEEE: Yogyakarta, Indonesia; 2022; pp. 314–319; doi: 10.1109/ICITISEE57756.2022.10057785.
Ridwan A, Sari TN. The comparison of accuracy between naïve bayes clasifier and c4.5 algorithm in classifying toddler nutrition status based on anthropometry index. J Phys: Conf Ser 2021;1764(1):012047; doi: 10.1088/1742-6596/1764/1/012047.
Aziz M. APLIKASI PENENTU STATUS DAN ASUPAN GIZI PADA BALITA MENGGUNAKAN METODE FUZZY DAN TOPSIS BERBASIS ANDROID. tugasakhir. University of Technology Yogyakarta; 2019.
Romero ML, Suyama R. Data Quality in IoT Applications: A Scoping Review. In: 2023 15th IEEE International Conference on Industry Applications (INDUSCON) 2023; pp. 1368–1373; doi: 10.1109/INDUSCON58041.2023.10374893.
Rath CK, Mandal AK, Sarkar A. Data Quality Driven Design Patterns for Internet of Things. In: Applied Computing for Software and Smart Systems. (Chaki R, Cortesi A, Saeed K, et al. eds) Springer Nature: Singapore; 2023; pp. 285–303; doi: 10.1007/978-981-19-6791-7_18.
Al Rahmad AH, Ichsan I, Wilis R. Implementation of Android Platform Application “PSG Balita” ISO/IEC 25010 Standardized to Improve Nutritional Status Data for Toddler. JIK 2023;17(1):14–21; doi: 10.33860/jik.v17i1.2083.
Suharjito S, Jimmy J, Girsang AS. Mobile Decision Support System to Determine Toddler’s Nutrition Using Fuzzy Sugeno. IJECE 2017;7(6):3683; doi: 10.11591/ijece.v7i6.pp3683-3691.
Putri IP, Terttiaavini T, Arminarahmah N. Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak: Comparative Analysis of Machine Learning Algorithms for Predicting Child Stunting. MALCOM: Indonesian Journal of Machine Learning and Computer Science 2024;4(1):257–265; doi: 10.57152/malcom.v4i1.1078.
Ferliandini DA, Risnanto S. Aplikasi Prediksi Status Gizi Balita Berbasis Web Menggunakan Metode K-Nearest Neighbor. sobat 2023;5:622; doi: 10.32897/sobat.2023.5.0.3136.
Molina JI, Malese LP. SISTEM PENDUKUNG KEPUTUSAN PENENTUAN STATUS GIZI BALITA PADA DINAS KESEHATAN KABUPATEN ALOR MENGGUNAKAN ALGORITMA C4.5. JTIK 2024;17(1):1–13; doi: 10.47561/a.v17i1.252.
Anonymous. Nutrients | Free Full-Text | Evaluation of an Application for Mobile Telephones (e-12HR) to Increase Adherence to the Mediterranean Diet in University Students: A Controlled, Randomized and Multicentric Study. n.d. Available from: https://www.mdpi.com/2072-6643/14/19/4196 [Last accessed: 6/25/2024].
Janssen SM, Bouzembrak Y, Tekinerdogan B. Artificial Intelligence in Malnutrition: A Systematic Literature Review. Advances in Nutrition 2024;15(9):100264; doi: 10.1016/j.advnut.2024.100264.
Kishore KK, Suman JV, Mnikyamba IL, et al. Prediction of Malnutrition in newbornInfants Using Machine Learning Techniques. 2023; doi: 10.21203/rs.3.rs-2958834/v1.
Widodo AP, Adi K, Nugraheni SA, et al. Measurement of information quality on mozita application uses the weighted average model. J Phys: Conf Ser 2020;1524(1):012009; doi: 10.1088/1742-6596/1524/1/012009.
Vasiloglou MF, Van Der Horst K, Stathopoulou T, et al. The Human Factor in Automated Image-Based Nutrition Apps: Analysis of Common Mistakes Using the goFOOD Lite App. JMIR Mhealth Uhealth 2021;9(1):e24467; doi: 10.2196/24467.
Lemma S, Janson A, Persson L-Å, et al. Improving quality and use of routine health information system data in low- and middle-income countries: A scoping review. PLOS ONE 2020;15(10):e0239683; doi: 10.1371/journal.pone.0239683.
Yang Y-L, Yang H-L, Kusuma JD, et al. Validating Accuracy of an Internet-Based Application against USDA Computerized Nutrition Data System for Research on Essential Nutrients among Social-Ethnic Diets for the E-Health Era. Nutrients 2022;14(15):3168; doi: 10.3390/nu14153168.
Kusuma JD, Yang H-L, Yang Y-L, et al. Validating Accuracy of a Mobile Application against Food Frequency Questionnaire on Key Nutrients with Modern Diets for mHealth Era. Nutrients 2022;14(3):537; doi: 10.3390/nu14030537.
Green Corkins K, Teague EE. Pediatric Nutrition Assessment: Anthropometrics to Zinc. Nut in Clin Prac 2017;32(1):40–51; doi: 10.1177/0884533616679639.
Haddaway NR, Page MJ, Pritchard CC, et al. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews 2022;18(2):e1230; doi: 10.1002/cl2.1230.
Ferliandini DA, Risnanto S. APLIKASI PREDIKSI STATUS GIZI BALITA BERBASIS WEB MENGGUNAKAN METODE K-NEAREST NEIGHBOR. Prosiding Seminar Sosial Politik, Bisnis, Akuntansi dan Teknik 2023;5:622–631; doi: 10.32897/sobat.2023.5.0.3136.
Teshome EM, Kiprotich P, Andango PE. Paradigm shift: efficient and cost effective real-time nutritional assessment technique. African Journal of Food, Agriculture, Nutrition and Development 2017;17(4):12807–12816; doi: 10.18697/ajfand.80.17225.
Kurniastuti I. Application of Baby’s Nutrition Status Using Macromedia Flash. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT) 2017; pp. 1–6; doi: 10.1109/CAIPT.2017.8320699.
Heymsfield SB, Bourgeois B, Ng BK, et al. Digital Anthropometry: A Critical Review. Eur J Clin Nutr 2018;72(5):680–687; doi: 10.1038/s41430-018-0145-7.
Bhattacharya A, Pal B, Mukherjee S, et al. Assessment of nutritional status using anthropometric variables by multivariate analysis. BMC Public Health 2019;19(1):1045; doi: 10.1186/s12889-019-7372-2.
Permatasari D, Azizah IN, Hadiat HL, et al. Classification of Toddler Nutritional Status Using Fuzzy Inference System (FIS). Yogyakarta, Indonesia; 2017; p. 040007; doi: 10.1063/1.4995122.
Conkle J, Suchdev PS, Alexander E, et al. Accuracy and reliability of a low-cost, handheld 3D imaging system for child anthropometry. Wieringa F. ed. PLoS ONE 2018;13(10):e0205320; doi: 10.1371/journal.pone.0205320.
Copyright (c) 2025 Amerta Nutrition

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
AMERTA NUTR by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).
4. The Creative Commons Attribution Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violation.