Main Article Content
Abstract
Highlights:
- This research analyzed a previously understudied subject in Surabaya, Indonesia, and discovered knockdown resistance (kdr) mutations in Aedes albopictus.
- The findings of this study can prompt further research, including bioassay testing and the development of more potent insecticides.
Abstarct :
Dengue hemorrhagic fever (DHF) has been endemic in Indonesia for decades. Insecticides are necessary to manage the transmission of the dengue virus. However, prolonged use of insecticides can lead to insecticide resistance. This study aimed to examine the genotype of mosquitoes using the allele-specific polymerase chain reaction (ASPCR) method. The ASPCR method was chosen for genotype detection due to its high sensitivity, affordability, and ease of design. Five mosquitoes were collected from human habitation in four different areas of Surabaya, Indonesia, namely Kranggan, Ulul Azmi Mosque, Ploso, and Kalijudan. Among them, three samples were identified as Aedes albopictus (A1, A2, and A5) and two samples were identified as Aedes aegypti (A3 and A4). The frequency of resistant alleles was analyzed using the Hardy-Weinberg package in RStudio version 2023.03.1. This study revealed that two mosquitoes carried homozygous mutant alleles with a band of 113 bp and three mosquitoes carried homozygous wild-type alleles with a band of 93 bp. Cysteine-to-cysteine (C/C) mutations and phenylalanine-to-phenylalanine (F/F) mutations at codon 1534 were observed in Aedes aegypti and Aedes albopictus mosquitoes. The homozygous mutant alleles were found in Kranggan, Surabaya, Indonesia. Further research is required to assess insecticide resistance and knockdown resistance (kdr)-like mutation by collecting more representative samples from larger areas within the region of Surabaya. Nevertheless, this study can be used as a reference for vector control and early prevention of dengue fever.
Keywords
Article Details
Copyright (c) 2023 Folia Medica Indonesiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Folia Medica Indonesiana is a scientific peer-reviewed article which freely available to be accessed, downloaded, and used for research purposes. Folia Medica Indonesiana (p-ISSN: 2541-1012; e-ISSN: 2528-2018) is licensed under a Creative Commons Attribution 4.0 International License. Manuscripts submitted to Folia Medica Indonesiana are published under the terms of the Creative Commons License. The terms of the license are:
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial ” You may not use the material for commercial purposes.
ShareAlike ” If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
You are free to :
Share ” copy and redistribute the material in any medium or format.
Adapt ” remix, transform, and build upon the material.
References
- Amelia-Yap ZH, Chen CD, Sofian-Azirun M, et al (2018). Efficacy of mosquito coils: Cross-resistance to pyrethroids in aedes aegypti (Diptera: Culicidae) from Indonesia. Journal of Economic Entomology. doi: 10.1093/jee/toy296.
- Atencia MC, Pérez MDJ, Jaramillo MC, et al (2016). First report of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in Aedes aegypti from Colombia. Biomedica: revista del Instituto Nacional de Salud 36, 432–437. doi: 10.7705/biomedica.v36i3. 2834.
- Auteri M, La Russa F, Blanda V, et al (2018). Insecticide resistance associated with kdr mutations in Aedes albopictus : An update on worldwide evidences. Biomed Research International 2018, 1–10. doi: 10.1155/2018/ 3098575.
- Balaska S, Fotakis EA, Kioulos I, et al (2020). Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasite & Vectors 13, 328. doi: 10.1186/s13071-020-04204-0.
- Chen M, Du Y, Wu S, et al (2019). Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti ed. Lenhart A. PLoS Neglected Tropical Diseases 13, e0007432. doi: 10.1371/journal.pntd.0007432.
- Dania IA (2016). Gambaran penyakit dan vektor demam berdarah dengue (DBD). Majalah Ilmiah Warta Dharmawangsa. doi: 10.46576/ wdw.v0i48.179.
- Darawi MN, Ai-Vyrn C, Ramasamy K, et al (2013). Allele-specific polymerase chain reaction for the detection of Alzheimer's disease-related single nucleotide polymorphisms. BMC Med Genet 14, 27. doi: 10.1186/1471-2350-14-27.
- Davies TGE, Williamson MS (2009). Interactions of pyrethroids with the voltage-gated sodium channel. Bayer Crop Science Journal 62, 159–178.
- Fan Y, Scott JG (2020). The F1534C voltage"sensitive sodium channel mutation confers 7" to 16"fold resistance to pyrethroid insecticides in Aedes aegypti. Pest Management Science 76, 2251–2259. doi: 10.1002/ps.5763.
- Fauziyah S, Subekti S, Utomo B, et al (2021). Detection of knockdown-resistance mutations (V1016G and F1534C) in dengue vector from Urban Park, Surabaya, Indonesia. Journal of Tropical Biodiversity and Biotechnolology 6, 65357. doi: 10.22146/jtbb.65357.
- Hamid PH, Prastowo J, Ghiffari A, et al (2017). Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia ed. Hwang J-S. PLoS One 12, e0189680. doi: 10.1371/journal.pone.0189 680.
- Kushwah RBS, Dykes CL, Kapoor N, et al (2015). Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti ed. Kittayapong P. PLoS Neglected Tropical Diseases 9, e3332. doi: 10.1371/journal.pntd.0003332.
- Lee HB, Schwab TL, Koleilat A, et al (2016). Allele-specific quantitative PCR for accurate, rapid, and cost-effective genotyping. Human Gene Therapy 27, 425–435. doi: 10.1089/hum.2016.011.
- Liu N (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review Entomology 60, 537–559. doi: 10.1146/annurev-ento-010814-020828.
- Lorenz TC (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. doi: 10.3791/3998.
- Mahdieh N, Rabbani B (2013). An overview of mutation detection methods in genetic disorders. Iranian Journal of Pediatrics 23, 375–388.
- Maula AW, Fuad A, Utarini A (2018). Ten-years trend of dengue research in Indonesia and South-east Asian countries: a bibliometric analysis. Global Health Action 11, 1504398. doi: 10.1080/16549716.2018.1504398.
- Modak MP, Saha D (2022). First report of F1534C kdr mutation in deltamethrin resistant Aedes albopictus from northern part of West Bengal, India. Scientific Reports 12, 13653. doi: 10.1038/s41598-022-17739-2.
- Putri WA, Rohiman A, Sulistiawati S, et al (2019). Effects of climatic factors on the incidence rate of dengue virus infection in Surabaya during 2010-2013. Biomolecular and Health Science Journal 2, 36. doi: 10.20473/ bhsj.v2i1.9340.
- Rahayu DF, Ustiawan A (2013). Identifikasi aedes aegypti dan aedes albopictus. Balaba 9, 7–10.
- Saingamsook J, Saeung A, Yanola J, et al (2017). A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti. Parasites & Vectors 10, 465. doi: 10.1186/s13071-017-2416-x.
- Setiawan AR, Fadila SZ, Sucipto TH, et al (2023). Detection of homozygous wildtype V1016V using allele-specific polymerase chain reaction in Aedes albopictus. Biodiversitas Journal of Biological Diversity. doi: 10.13057/biodiv/d240109.
- Silalahi CN, Tu W-C, Chang N-T, et al (2022). Insecticide resistance profiles and synergism of field aedes aegypti from Indonesia ed. Barrera R. PLoS Neglected Tropical Diseases 16, e0010501. doi: 10.1371/journal.pntd. 0010501.
- Smith LB, Kasai S, Scott JG (2018). Voltage"sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Management Science 74, 737–745. doi: 10.1002/ps.4771.
- Soegijanto S, Sucipto TH, Mulyatno KC, et al (2021). Epidemiology study of dengue virus in Surabaya, Bogor, and Bangkalan, Indonesia 2008-2018. Folia Medica Indonesiana 56, 296. doi: 10.23736/S0393-3660.20.04350-8.
- Sokhna C, Ndiath MO, Rogier C (2013). The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clinical Microbiology and Infection 19, 902–907. doi: 10.1111/1469-0691.12314.
- Stenhouse SA, Plernsub S, Yanola J, et al (2013). Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasite & Vectors 6, 253. doi: 10.1186/1756-3305-6-253.
- Vu TX, Andrianov B V., Vu DC, et al (2020). qPCR identification of the kdr allele F1534C in voltage-gated sodium channel gene (vgsc) of the major mosquito vectors aedes aegypti and aedes albopictus in Northern and Central Vietnam. Russian Journal of Genetics 56, 460–469. doi: 10.1134/S1022795420040158.
- Wardhani P, Aryati A, Yohan B, et al (2017). Clinical and virological characteristics of dengue in Surabaya, Indonesia ed. Munderloh UG. PLoS One 12, e0178443. doi: 10.1371/journal.pone.0178443.
- Wuliandari J, Lee S, White V, et al (2015). Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in aedes aegypti from Yogyakarta, Indonesia. Insects 6, 658–85. doi: 10.3390/insects6030658.
- Yang Z, Zhao N, Chen D, et al (2017). Improved detection of BRAF V600E using allele-specific PCR coupled with external and internal controllers. Scientific Reports 7, 13817. doi: 10.1038/s41598-017-14140-2.
- Zheng X, Zheng Z, Wu S, et al (2022). Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasites & Vectors 15, 156. doi: 10.1186/s13071-022-05241-7.
- Zhu CY, Zhao CC, Wang YG, et al (2019). Establishment of an innovative and sustainable PCR technique for 1534 locus mutation of the knockdown resistance (kdr) gene in the dengue vector Aedes albopictus. Parasites & Vectors 12, 603. doi: 10.1186/s13071-019-3829-5.
References
Amelia-Yap ZH, Chen CD, Sofian-Azirun M, et al (2018). Efficacy of mosquito coils: Cross-resistance to pyrethroids in aedes aegypti (Diptera: Culicidae) from Indonesia. Journal of Economic Entomology. doi: 10.1093/jee/toy296.
Atencia MC, Pérez MDJ, Jaramillo MC, et al (2016). First report of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in Aedes aegypti from Colombia. Biomedica: revista del Instituto Nacional de Salud 36, 432–437. doi: 10.7705/biomedica.v36i3. 2834.
Auteri M, La Russa F, Blanda V, et al (2018). Insecticide resistance associated with kdr mutations in Aedes albopictus : An update on worldwide evidences. Biomed Research International 2018, 1–10. doi: 10.1155/2018/ 3098575.
Balaska S, Fotakis EA, Kioulos I, et al (2020). Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasite & Vectors 13, 328. doi: 10.1186/s13071-020-04204-0.
Chen M, Du Y, Wu S, et al (2019). Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti ed. Lenhart A. PLoS Neglected Tropical Diseases 13, e0007432. doi: 10.1371/journal.pntd.0007432.
Dania IA (2016). Gambaran penyakit dan vektor demam berdarah dengue (DBD). Majalah Ilmiah Warta Dharmawangsa. doi: 10.46576/ wdw.v0i48.179.
Darawi MN, Ai-Vyrn C, Ramasamy K, et al (2013). Allele-specific polymerase chain reaction for the detection of Alzheimer's disease-related single nucleotide polymorphisms. BMC Med Genet 14, 27. doi: 10.1186/1471-2350-14-27.
Davies TGE, Williamson MS (2009). Interactions of pyrethroids with the voltage-gated sodium channel. Bayer Crop Science Journal 62, 159–178.
Fan Y, Scott JG (2020). The F1534C voltage"sensitive sodium channel mutation confers 7" to 16"fold resistance to pyrethroid insecticides in Aedes aegypti. Pest Management Science 76, 2251–2259. doi: 10.1002/ps.5763.
Fauziyah S, Subekti S, Utomo B, et al (2021). Detection of knockdown-resistance mutations (V1016G and F1534C) in dengue vector from Urban Park, Surabaya, Indonesia. Journal of Tropical Biodiversity and Biotechnolology 6, 65357. doi: 10.22146/jtbb.65357.
Hamid PH, Prastowo J, Ghiffari A, et al (2017). Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia ed. Hwang J-S. PLoS One 12, e0189680. doi: 10.1371/journal.pone.0189 680.
Kushwah RBS, Dykes CL, Kapoor N, et al (2015). Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti ed. Kittayapong P. PLoS Neglected Tropical Diseases 9, e3332. doi: 10.1371/journal.pntd.0003332.
Lee HB, Schwab TL, Koleilat A, et al (2016). Allele-specific quantitative PCR for accurate, rapid, and cost-effective genotyping. Human Gene Therapy 27, 425–435. doi: 10.1089/hum.2016.011.
Liu N (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review Entomology 60, 537–559. doi: 10.1146/annurev-ento-010814-020828.
Lorenz TC (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. doi: 10.3791/3998.
Mahdieh N, Rabbani B (2013). An overview of mutation detection methods in genetic disorders. Iranian Journal of Pediatrics 23, 375–388.
Maula AW, Fuad A, Utarini A (2018). Ten-years trend of dengue research in Indonesia and South-east Asian countries: a bibliometric analysis. Global Health Action 11, 1504398. doi: 10.1080/16549716.2018.1504398.
Modak MP, Saha D (2022). First report of F1534C kdr mutation in deltamethrin resistant Aedes albopictus from northern part of West Bengal, India. Scientific Reports 12, 13653. doi: 10.1038/s41598-022-17739-2.
Putri WA, Rohiman A, Sulistiawati S, et al (2019). Effects of climatic factors on the incidence rate of dengue virus infection in Surabaya during 2010-2013. Biomolecular and Health Science Journal 2, 36. doi: 10.20473/ bhsj.v2i1.9340.
Rahayu DF, Ustiawan A (2013). Identifikasi aedes aegypti dan aedes albopictus. Balaba 9, 7–10.
Saingamsook J, Saeung A, Yanola J, et al (2017). A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti. Parasites & Vectors 10, 465. doi: 10.1186/s13071-017-2416-x.
Setiawan AR, Fadila SZ, Sucipto TH, et al (2023). Detection of homozygous wildtype V1016V using allele-specific polymerase chain reaction in Aedes albopictus. Biodiversitas Journal of Biological Diversity. doi: 10.13057/biodiv/d240109.
Silalahi CN, Tu W-C, Chang N-T, et al (2022). Insecticide resistance profiles and synergism of field aedes aegypti from Indonesia ed. Barrera R. PLoS Neglected Tropical Diseases 16, e0010501. doi: 10.1371/journal.pntd. 0010501.
Smith LB, Kasai S, Scott JG (2018). Voltage"sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Management Science 74, 737–745. doi: 10.1002/ps.4771.
Soegijanto S, Sucipto TH, Mulyatno KC, et al (2021). Epidemiology study of dengue virus in Surabaya, Bogor, and Bangkalan, Indonesia 2008-2018. Folia Medica Indonesiana 56, 296. doi: 10.23736/S0393-3660.20.04350-8.
Sokhna C, Ndiath MO, Rogier C (2013). The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clinical Microbiology and Infection 19, 902–907. doi: 10.1111/1469-0691.12314.
Stenhouse SA, Plernsub S, Yanola J, et al (2013). Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasite & Vectors 6, 253. doi: 10.1186/1756-3305-6-253.
Vu TX, Andrianov B V., Vu DC, et al (2020). qPCR identification of the kdr allele F1534C in voltage-gated sodium channel gene (vgsc) of the major mosquito vectors aedes aegypti and aedes albopictus in Northern and Central Vietnam. Russian Journal of Genetics 56, 460–469. doi: 10.1134/S1022795420040158.
Wardhani P, Aryati A, Yohan B, et al (2017). Clinical and virological characteristics of dengue in Surabaya, Indonesia ed. Munderloh UG. PLoS One 12, e0178443. doi: 10.1371/journal.pone.0178443.
Wuliandari J, Lee S, White V, et al (2015). Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in aedes aegypti from Yogyakarta, Indonesia. Insects 6, 658–85. doi: 10.3390/insects6030658.
Yang Z, Zhao N, Chen D, et al (2017). Improved detection of BRAF V600E using allele-specific PCR coupled with external and internal controllers. Scientific Reports 7, 13817. doi: 10.1038/s41598-017-14140-2.
Zheng X, Zheng Z, Wu S, et al (2022). Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasites & Vectors 15, 156. doi: 10.1186/s13071-022-05241-7.
Zhu CY, Zhao CC, Wang YG, et al (2019). Establishment of an innovative and sustainable PCR technique for 1534 locus mutation of the knockdown resistance (kdr) gene in the dengue vector Aedes albopictus. Parasites & Vectors 12, 603. doi: 10.1186/s13071-019-3829-5.