MCP-1 LEVELS AND ATYPICAL LYMPHOCYTES IN EARLY FEVER OF DENGUE VIRUS INFECTION WITH NON-STRUCTURAL PROTEIN 1 (NS-1) ANTIGEN TEST IN dr DARSONO HOSPITAL, PACITAN

Indah Agustiningrum, Jusak Nugraha, Hartono Kahar

= http://dx.doi.org/10.20473/ijtid.v8i1.12696
Abstract views = 782 times | downloads = 740 times

Abstract


Dengue infection caused by DENV and transmitted by mosquitoes Aedes aegypti and Aedes albopictus is a major health problem in the world, including Indonesia. Clinical manifestations of dengue infection are very widely, from asymptomatic until dengue shock syndrome (DSS). DENV will attack macrophages and dendritic cells (DC) and replicate them. Monocytes are macrophages in the blood (±10% leukocytes). Macrophages produce cytokines and chemokines such as monocyte chemotactic protein-1 (MCP-1)/CCL2The monocytes that are infected with DENV will express MCP-1, which will increase the permeability of vascular endothelial cells so that they have a risk of developing DHF/DSS. Macrophages and DC secrete NS1 proteins, which are the co-factors that are needed for viral replication and can be detected in the early phase of fever. The increased MCP-1 levels in dengue infection followed by an increase in the number of atypical lymphocytes indicate the arrival of macrophages and monocytes to the site of inflammation which triggers proliferation rather than lymphocytes. This is an observational analytical study with a cross-sectional design to determine the MCP-1 level in dengue infection patients with 1st until the 4th day of fever and the presence of atypical lymphocytes. Dengue infection was determined by rapid tests NS1 positive or negative and MCP-1 levels were measured using by ELISA sandwich method.MCP-1 level of sixty patients dengue infection NS-1 rapid positive or negative with 2nd until 4rt fever were significantly higher than healthy subjects (420.263±158,496vs29, 475±23.443;p=0.000), but there was no significant difference in subjects with DF, DHF or DSS (436,47±225,59 vs422,77±170,55vs 448,50±117,39; p =0.844). Atypicallymphosite differs significantly in healthy  subjects than subjects infected with DENV an average of 2% (p= 0,000). In conclusion, this shows the arrival of macrophages and monocytes to the site of inflammation, which triggers the proliferation of lymphocytes.


Keywords


MCP-1, Atypical lymphocytes, NS-1, Hematology parameter, Pacitan

Full Text:

PDF

References


Tuiskunen Bäck A, Lundkvist Å. Dengue viruses – an overview. Infect Ecol Epidemiol. 2013;3(1):19839. doi:10.3402/iee.v3i0.19839

Rothman AL. Dengue Virus. London New York: Springer Heidelberg Dordrecht London New York; 2010. doi:10.1007/978-3-642-02215-9

Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell. 2015;162(3):488-492. doi:10.1016/j.cell.2015.07.005

WHO. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Revised and Expanded Edition.; 2011. doi:10.1017/CBO9781107415324.004

Goura Kudesia, Wreghitt T. Clinical and Diagnostic Virology. United States of America by Cambridge University Press, New Yorkd States of America by Cambridge University Press, New York: Cambridge University Press; 2009.

Ebrahimi M, Abadi A, Bashizadeh-Fakhar H, Fahimi4 E. Dengue fever in Iran. A case report. Acta Medica Mediterr. 2016;32(SpecialIssue5):2025-2027. doi:10.17795/zjrms-9953.Case

Dinas Kesehatan Propinsi JawaTimur. Profil Kesehatan Propinsi Jawa Timur 2017. Nucleic Acids Res. 2017;34(11):e77-e77.

Dinas Kesehatan Kabupaten Pacitan. Profil Kesehatan Kabupaten Pacitan Tahun 2016. Profil Kesehat Tahun 2016. 2016;(031). depkespacitan.

Melody S. Goodman. Biostatistics for Clinical and Public Health Research. First published 2018 by Routledge 711 Third Avenue, New York, NY 10017; 2018.

Gelanew T, Hunsperger E. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1). Virol J. 2018;15(1):1-12. doi:10.1186/s12985-018-0925-7

Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res. 2016;2016(3):1-14. doi:10.1155/2016/6803098

Lardo S, Soesatyo MHNE, Juffrie, Umniyati SR. The worsening factors of dengue hemorrhagic fever (DHF) based on cohort study with nested case-control in a tertiary hospital. IOP Conf Ser Earth Environ Sci. 2018;125(1). doi:10.1088/1755-1315/125/1/012011

Whitehorn J. The pathogenesis and clinical management of dengue. London Sch Hyg Trop Med. 2015:207. doi:10.17037/PUBS.02373944

Richman D. Clinical Virology. THIRD EDIT. (Edition F, ed.). Washington, DC 20036-2904, USA; 2017.

Malavige GN, Wijewickrama A, Fernando S, et al. A preliminary study on efficacy of rupatadine for the treatment of acute dengue infection. Sci Reports | 83857 | DOI101038/s41598-018-22285-x. 2018;8(1):1-14. doi:10.1038/s41598-018-22285-x

Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interf Cytokine Res. 2009;29(6):313-326. doi:10.1089/jir.2008.0027

Ching CL. The Regulations Of Cytokines And Chemokines In Dengue Virus-Infected Patients.(2011).

Tan TY, Chu JJH. Dengue virus-infected human monocytes trigger late activation of caspase-1, which mediates pro-inflammatory IL-1β secretion and pyroptosis. J Gen Virol. 2013;94(PART10):2215-2220. doi:10.1099/vir.0.055277-0

Ahmad R, Al-Roub A, Kochumon S, et al. The Synergy between Palmitate and TNF-α for CCL2 Production Is Dependent on the TRIF/IRF3 Pathway: Implications for Metabolic Inflammation. J Immunol. 2018:ji1701552. doi:10.4049/jimmunol.1701552

Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261-269. doi:10.1111/imm.12748

Gao X, Wen Y, Wang J, et al. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA. BMC Infect Dis. 2018;18(1):1-7. doi:10.1186/s12879-018-3173-y

Dembic Z. The Role Of Cytokines In Disease Related To Immune Response. Mica Haley Copyright © 2015 Elsevier Inc. All rights reserved.; 2015. doi:10.1016/b978-0-12-419998-9.01001-4

Jampangern W, Vongthoung K, Jittmittraphap A, et al. Characterization of atypical lymphocytes and immunophenotypes of lymphocytes in patients with dengue virus infection. Asian Pacific J Allergy Immunol. 2007;25(1):27-36.

Departemen Kesehatan Republik Indonesia 2008. Pedoman Praktik Laboratorium Kesehatan yang Benar. 2008:34-52.

Kemenkes RI. Cara Penyelenggaraan Laboratorium Klinik Yang Baik. Permenkes No 43 Tahun 2013. 2013:44-67.

Watson J. The Laser Guidebook Second Edition. Vol 26.; 2002. doi:10.1016/0030-3992(94)90101-5

MM K, GP K, M R, et al. A Study of Clinical and Laboratory Profile of Dengue Fever in Tertiary Care Hospital in Central Karnataka, India. Glob J Med Res. 2014;14(5 Version 1.0):7-12.

Raj Kumar Patro A, Mohanty S, Prusty BK, et al. Cytokine signature associated with disease severity in dengue. Viruses. 2019;11(1):1-12. doi:10.3390/v11010034

Huang J, Liang W, Chen S, et al. Serum Cytokine Profiles in Patients with Dengue Fever at the Acute Infection Phase. Dis Markers. 2018;2018:1-8. doi:10.1155/2018/8403937

Malavige GN, Huang LC, Salimi M, Gomes L, Jayaratne SD, Ogg GS. Cellular and Cytokine Correlates of Severe Dengue Infection. PLoS One. 2012;7(11). doi:10.1371/journal.pone.0050387

Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I− like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and TH1 Differentiation. J Immunol. 2017;198(12):4764-4771. doi:10.4049/jimmunol.1602121

Megawati D, Masyeni S, Yohan B, et al. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS Negl Trop Dis. 2017;11(5). doi:10.1371/journal.pntd.0005483

Fukusumi M, Arashiro T, Arima Y, et al. Dengue Sentinel Traveler Surveillance: Monthly and Yearly Notification Trends among Japanese Travelers, 2006–2014. PLoS Negl Trop Dis. 2016;10(8):2006-2014. doi:10.1371/journal.pntd.0004924

Muller DA, Depelsenaire ACI, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017;215(Suppl 2):S89-S95. doi:10.1093/infdis/jiw649

Chan HBY, How CH, Ng CWM. Definitive tests for dengue fever: When and which should I use? Singapore Med J. 2017;58(11):632-635. doi:10.11622/smedj.2017100

Ambrose JH, Sekaran SD, Azizan A. Dengue Virus NS1 Protein as a Diagnostic Marker: Commercially Available ELISA and Comparison to qRT-PCR and Serological Diagnostic Assays Currently Used by the State of Florida. J Trop Med. 2017;2017:1-6. doi:10.1155/2017/8072491

Mat Jusoh TNA, Shueb RH. Performance Evaluation of Commercial Dengue Diagnostic Tests for Early Detection of Dengue in Clinical Samples. J Trop Med. 2017;2017:1-4. doi:10.1155/2017/4687182

Huits R, Soentjens P, Maniewski-Kelner U, et al. Clinical utility of the nonstructural 1 antigen rapid diagnostic test in the management of dengue in returning travelers with fever. Open Forum Infect Dis. 2017;4(1):1-6. doi:10.1093/oid/ofw273

Sa-ngamuang C, Haddawy P, Luvira V, Piyaphanee W, Iamsirithaworn S, Lawpoolsri S. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: Comparison between human and Bayesian network model decision. PLoS Negl Trop Dis. 2018;12(6):1-14. doi:10.1371/journal.pntd.0006573

Guzman MG, Halstead SB, Artsob H, et al. Dengue: A continuing global threat. Nat Rev Microbiol. 2010;8(12):S7-S16. doi:10.1038/nrmicro2460

Hunsperger EA, Muñoz-Jordán J, Beltran M, et al. Performance of Dengue Diagnostic Tests in a Single-Specimen Diagnostic Algorithm. J Infect Dis. 2016;214(6):836-844. doi:10.1093/infdis/jiw103

Palomares-Reyes C, Silva-Caso W, del Valle LJ, et al. Dengue diagnosis in an endemic area of Peru: Clinical characteristics and positive frequencies by RT-PCR and serology for NS1, IgM, and IgG. Int J Infect Dis. 2019;81:31-37. doi:10.1016/j.ijid.2019.01.022

Teoh BT, Sam SS, Tan KK, et al. The Use of NS1 Rapid Diagnostic Test and qRT-PCR to Complement IgM ELISA for Improved Dengue Diagnosis from Single Specimen. Sci Rep. 2016;6(June):1-8. doi:10.1038/srep27663

Hottz ED, Bozza FA, Bozza PT. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med. 2018;5(May). doi:10.3389/fmed.2018.00121

Srikiatkhachorn A, Mathew A, Rothman AL. Immune Mediated Cytokine Storm and Its Role in Severe Dengue. 2017;39(5):1-10. doi:10.1109/EMBC.2016.7590696.Upper

Sehrawat P, Biswas A, Kumar P, et al. Mediterranean Journal of Hematology and Infectious Diseases Role of Cytokines as Molecular Marker of Dengue Severity. Mediterr J Hematol Infect Dis. 2018;10(101):2-6. doi:10.4084/MJHID.2018.023

Yong YK, Tan HY, Jen SH, et al. Aberrant monocyte responses predict and characterize dengue virus infection in individuals with severe disease. J Transl Med. 2017;15(1). doi:10.1186/s12967-017-1226-4

Detrick B, Schmitz JL, Hamilton RG. Manual of Molecular and Clinical Laboratory Immunology.; 2016.

Güneş H, Mete R, Aydin M, et al. Relationship among MIF, MCP-1, viral loads, and HBs ag levels in chronic hepatitis B patients. Turkish J Med Sci. 2015;45(3):634-637. doi:10.3906/sag-1401-171

Zhao H, Zhang FC, Zhu Q, et al. Epidemiological and virological characterizations of the 2014 dengue outbreak in Guangzhou, China. PLoS One. 2016;11(6):1-10. doi:10.1371/journal.pone.0156548

Teijaro JR. Cytokine storms in infectious diseases. Semin Immunopathol. 2017;39(5):501-503. doi:10.1007/s00281-017-0640-2

Oliveira AFC da S, Teixeira RR, Oliveira AS de, Souza APM de, Silva ML da, Paula SO de. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses. Molecules. 2017;22(3):505. doi:10.3390/molecules22030505

Hernández SI de la C, Nelson HNP-G, Flores H, et al. Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz. 2016;111(3):161-167. doi:10.1590/0074-02760150359

Soo K-M, Khalid B, Ching S-M, Tham CL, Basir R, Chee H-Y. Meta-analysis of biomarkers for severe dengue infections. PeerJ. 2017;5:e3589. doi:10.7717/peerj.3589

Soegijanto S, Sari DW, Yamanaka A, Kotaki T, Kameoka M, Konishi E. Awareness of Using Ringer Lactat Solution in Dengue Virus Infection Cases Could Induce Severity. Indones J Trop Infect Dis. 2017;4(4):35. doi:10.20473/ijtid.v4i4.231

Simon MW. The atypical lymphocyte. Int Pediatr. 2003;18(1):20-22.

Shetty A, Kasukurti P, Vijaya C, Jayalakshmi VJ. Original Article The Reactive Lymphocyte : A Morphological Indicator of Platelet Counts in Dengue Seropostive Patients. 2016;(15).

Avegail M Cardinal, Alba VJ. National surveillance for influenza and influenza like illness in Qatar, Januaryâ“December 2015: An analysis of sentinel surveillance systems. J Infect Dis Ther. 2017;05(03):4172. doi:10.4172/2332-0877-c1-027

Rey-Caro LA, Villar-Centeno L angel. Atypical lymphocytes in dengue: role in diagnosis and prognosis of disease. A systematic review of literature. Rev Ciencias la Salud. 2012;10(3):323-335.

Thanachartwet V, Oer-areemitr N, Chamnanchanunt S, et al. Identification of clinical factors associated with severe dengue among Thai adults: A prospective study. BMC Infect Dis. 2015;15(1):1-11. doi:10.1186/s12879-015-1150-2

Yunus YM. Morphological Features Analysis in Pathogenic Dengue Infection as an Alternative Screening Method. Int J Acad Res Bus Soc Sci 2017, Vol 7, No 2 ISSN 2222-6990. 2017;7(2):801-811. doi:10.6007/IJARBSS/v7-i2/2716


Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Indonesian Journal of Tropical and Infectious Disease

View My Stats

IJTID Indexed by : 

        

 
IJTID (pISSN 2085-1103eISSN 2356-0991is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Lembaga Penyakit Tropis (Institute of Tropical Disease)

Universitas Airlangga

Kampus C Mulyorejo

Surabaya 60115