Antifouling-Bacterial Potentials of Kenikir (Cosmos caudatus) and Bandotan (Ageratum conyzoides) Leaf Extracts in Freshwater Environment
Downloads
Biofouling refers to the attachment of organisms to the surface of an object submerged in water. It is often undesirable due to its detrimental effects, meanwhile, one way of managing biofouling is via antifouling. This study aims to examine the potential of kenikir (Cosmos caudatus) and bandotan (Ageratum conyzoides) leaves extracts as an alternative to natural antifouling. The research was conducted using the exploration method where the extract of both plants was examined in field and laboratory scales. Moreover, the extracts were mixed with paint without antifouling and then tested on a field scale by painting on wooden blocks. Observations were made by counting the number of microfouling in form of bacterial colonies attached to the painted wood surface by scraping the surface of the wood submerged in freshwater for one week. The results showed that the number of bacterial colonies with kenikir leaves extract was less than the bandotan extract. Moreover, based on the phytochemical analysis results, both kenikir and bandotan extracts contain alkaloids, steroids, tannins and saponins, however, the alkaloid content in kenikir leaf extract was higher compared to bandotan leaves. In conclusion, kenikir leaves extract has greater potential as an alternative source of antifouling compared to bandotan because the former has more bioactive content, especially alkaloid compounds.
Agostini, V.O., Macedo, A.J., Muxagata, E., da Silva, M.V. and Pinho, G.L.L., 2020. Non-Toxic antifouling potential of caatinga plant extracts : effective inhibition of marine initial biofouling. Hydrobiologia, 847, pp.45-60. https://doi.org/10.1007/ s10750-019-04071-6
Aykin, E., Omuzbuken, B. and Kacar, A., 2019. Microfouling bacteria and the use of enzymes in eco-friendly antifouling technology. Journal of Coatings Technology and Research, 16, pp.847-856. https://doi.org/10. 1007/s11998-018-00161-7
Bellotti, N., del Amo, B. and Romagnoli, R., 2012. Caesalpinia spinosa tannin derivatives for antifouling formulations. Procedia Materials Science, 1, pp.259-265. Elsevier Ltd. Selection. https://doi.org/10.1016/ j.mspro.2012.06.035
Besemer, K., 2015. Biodiversity, community structure and function of biofilms in stream ecosystems. Europe PMC Funders Research in Microbiology, 166(10), pp.774-781. https://doi.org/10.1016/j.resmic.2015.05.006
Characklis, W.G. and Cooksey, K.E., 1983. Biofilms and microbial fouling. Advances in Applied Microbiology, 29, pp.93-138. https://doi.org/10.1 016/S0065-2164(08)70355-1
Dewi, C.S.U., Soedharma, D. and Kawaroe, M., 2012. Phytochemical compound and toxicity of seagrass Enhalus acoroides and Thalassia hemprichii from Pramuka Island, DKI Jakarta. Jurnal Teknologi Perikanan dan Kelautan, 3(2), pp.23-27. https://doi.org/10.24319 /jtpk.3.23-27
Fardiaz, S., 1989. Petunjuk laboratorium analisis mikrobiologi pangan. IPB, Bogor, p. 121.
Fujita, D.S., Takeda, A.M., Coutinho, R. and Fernandes, F.C., 2015. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition. Brazilian Journal of Biology, 75(4), pp.S70-S78. https://doi.org/10.159 0/1519-6984.05114
Guardiola, F.A., Cuesta, A., Meseguer, J. and Esteban, M.A., 2012. Risk of using antifouling biocides in aquaculture. International Journal of Molecular Sciences, 13(2), pp.1541-1560. https://doi.org/10.3390/ijms 13021541
Idora, M.S.N., Ferry, M., Wan Nik, W.B. and Jasnizat, S., 2015. Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, pp.125-131. https://doi.org/10.101 6/j.porgcoat.2014.12.012
Kusuma, I.J.D., Prasetyorini and Wardatun, S., 2015. Toksisitas ekstrak daun kenikir (Cosmos caudatus Kunth) dengan perbedaan metode dan jenis pelarut berbeda. JOM Bidang Farmasi, 1(1), pp.1-8. https://jom.unpak.ac.id/index.php/Farmasi/article/view/705
Marhaeni, B., 2012. Biofouling pada beberapa jenis substrat permukaan kasar dan halus. Sains Akuatik: Jurnal Ilmiah Ilmu-Ilmu Perairan, 14(1), pp.41-47. http://jurnalnasio nal.ump.ac.id/index.php/AKUATIK/article/view/378
Matsuura, H.N. and Feet-Neto, A.G., 2015. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In Gopalakrishnakone P., Carlini C., Ligabue-Braun R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-00 7-6464-4_2
Mengkido, M., Lambui, O. and Harso, W., 2019. Uji daya hambat ekstrak daun bandotan (Ageratum conyzoides L.) terhadap pertumbuhan bakteri Staphylococcus aureus. Biocelebes, 13(2), pp.121-130. https://bestjour nal.untad.ac.id/index.php/Biocelebes/article/view/13575
Nakano, D. and Strayer, D.L., 2014. Biofouling animals in fresh water: biology, impacts, and ecosystem engineering. Frontiers in Ecology and the Environment, 12(3), pp.167-175. https://doi.org/10.1890/130071
Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K.S., Hornes, E., Ugelstad, J. and Uhlen, M., 1994. Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7(1), pp.43-54. https://doi. org/10.1128/cmr.7.1.43
Puspitasari, R., 2016. Evaluasi Penggunaan Ekstrak Lamun Sebagai Bahan Aktif Antifouling Terhadap Produsen Perairan. Jurnal Segara, 12(1), pp.45-51. http://dx.doi.org/ 10.15578/segara.v12i1.7654
Radiena, M.S.Y. and Dompeipen, E.J., 2019. Identifikasi senyawa aktif triterpenoid dari ekstrak alga laut hijau silpau (Dictyosphaeria versluysii) dengan spektrofotometer FTIR. Majalah BIAM, 15(1), pp.33-40. http://dx.doi.org/10.29360/mb .v15i1.5297
Rahmawati, F., Bintang, M. and Artika, I.M., 2017. Antibacterial Activity and Phytochemical Analysis of Geranium homeanum Turez Leaves. Current Biochemistry, 4(3), pp.13-22. https://jurnal.ipb.ac.id/index.p hp/cbj/article/view/25431
Rasdi, N.H.M., Samah, O.A., Sule, A. and Ahmed, Q.U., 2010. Antimicrobial studies of Cosmos caudatus Kunth. (Compositae). Journal of Medicinal Plants Research, 4(8), pp.669-673. DOI: 10.5897/JMPR09.422
Richard, C., Mitbavkar, S. and Landoulsi, J., 2017. Diagnosis of the diaton community upon biofilm Development on Stainless Steels in natural freshwater. Hindawi, 2017, pp.13. https://doi.org/10.1155/20 17/5052646
Romanı, A.M., 2010. Freshwater biofilms. Biofouling. Wiley-Blackwell, Oxford, pp.137-153. DOI: 10.1002/978144 4315462
Sari, D.I. and Triyasmono, L., 2017. Rendemen dan flavonoid total ekstrak etanol kulit batang bangkal (Nauclea subdita) dengan metode maserasi ultrasonikasi. Jurnal pharmascience, 4(1), pp.48-53. https ://doi.org/10.20527/jps.v4i1.5755
Senja, R.Y., Issusilaningtyas, E., Nugroho, A.K. and Setyowati, E.P., 2014. The comparison of extraction method and solvent variation on yield and antioxidant activity of Brassica oleracea L. var capitata f. rubra Extract. Traditional Medicine Journal, 19(1), pp.43-48. https://do i.org/10.22146/tradmedj.8090
Wells, S. and Sytsma, M., 2009. A review of the use of coatings to mitigate bofouling in freshwater. Portland State University, Center for Lakes and Reservoirs.
Yebra, D.M., Kiil, S. and Dam-Johansen, K., 2004. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in organic coatings, 50(20), pp.75-104. https:/ /doi.org/10.1016/j.porgcoat.2003.06.001
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement