Application Of Microbubble Technology To Increase Oxygen Content In The Aquaculture Of Tambaqui (Colossoma Macropomum)
Downloads
The oxygen consumed is used to oxidize food substances to produce energy. Therefore, the metabolic rate is usually indicated by the rate of oxygen consumption per time unit. In most intensive aquaculture systems, oxygen content is widely used due to the high stocking density and maximum feeding rates. This study aimed to evaluate the growth performance of freshwater pomfret (Colossoma macropomum) treated with increased oxygen in two different systems. The study was conducted in a laboratory scale by applying T-test data analysis. The difference of treatment level applied in the comparison of aeration and microbubble consists of two treatments and three replications. The researcher used commercial floating pellets PF0 with 25% protein content, the feeding rate was 5% of the biomass. The feed was given daily during the culture for two times a day. Data of the study were analyzed using T-test on the Statistical Product and Service Solutions (SPSS) software Version 17.0. Results of the study showed that aeration system using microbubble resulted in dissolved oxygen (DO) of 6.5 ± 0.17, 100% pomfret fish survival rate (SR), Survival Growth Rate (SGR) of 1.83 ± 0.24, Feed Conversion Ratio (FCR) of 1.37 ± 0.17, Protein Efficiency Ratio (PER) of 2.79 ± 0.37, Feed Utilization Efficiency (FUE) of 0.67 ± 0.09, Absolute Weight Growth of 52.02 ± 1.60; it was better than using aeration. This study has developed a model of freshwater pomfret fish aquaculture to provide growth value.
Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M., & Monier, M. N. (2015). Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquaculture International, 23(5), 1261–1274. https://doi.org/10.1007/s10499-015-9882-y
Ago, K. I., Nagasawa, K., Takita, J., Itano, R., Morii, N., Matsuda, K., & Takahashi, K. (2005). Development of an aerobic cultivation system by using a microbubble aeration technology. Journal of Chemical Engineering of Japan, 38(9), 757–762. https://doi.org/10.1252/jcej.38.757
Amin, M., Agustono., Ali, M., Prayugo & Hum, N.N.M.F. (2022) Apparent nutrient utilization and metabolic growth rate of Nile tilapia, Oreochromis niloticus, cultured in recirculating aquaculture and biofloc systems. Open Agriculture, 7(1):445-454. doi.org/10.1515/opag-2022-0109.
Amin, M., Agustono., Prayugo, Ali, M. & Hum, N.N.M.F. (2021). Comparison of total nutrient recovery in aquaponics and conventional aquaculture systems. Open Agriculture, 6(1):682-688. doi.org/10.1515/opag-2021-0032.
Ayuningrum, S. B., Istiqomah, I., Rustadi, R., Triyatmo, B., Isnansetyo, A., Budhijanto, W., & Deendarlianto, D. (2020). Protective Effect of Microbubble Aeration and Dietary Probiotics BALSS on Survival and Immunity of White Leg Shrimp (Litopenaeus vannamei) Postlarvae against Acute Low Salinity Stress. Jurnal Perikanan Universitas Gadjah Mada, 22(1), 1. https://doi.org/10.22146/jfs.51258.
Bagherzadeh Lakani, F., Sattari, M., & Falahatkar, B. (2013). Effect of different oxygen levels on growth performance, stress response and oxygen consumption in two weight groups of great sturgeon Huso huso. Iranian Journal of Fisheries Sciences, 12(3), 533–549.
Budhijanto, W., Darlianto, D., Pradana, Y. S., & Hartono, M. (2017). Application of micro bubble generator as low cost and high efficient aerator for sustainable fresh water fish farming. AIP Conference Proceedings, 1840. https://doi.org/10.1063/1.4982338
Buentello, J. A., Gatlin, D. M., & Neill, W. H. (2000). Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182(3–4), 339–352. https://doi.org/10.1016/S0044-8486(99)00274-4
Brandt, S.B., Gerken, M., Hartman, K.J. & Demers, E. (2009) Effects of hypoxia on food consumption and growth of juvenile striped bass (Morone saxatilis). J. Exp. Mar. Biol. Ecol., 381, S143–S149.
Boyd, C. E. (1982). Water Quality Management for Pond Fish Culture. Elsevier, Amsterdam, 318 p.
Boyd, C.E. (1990). Water Quality in Ponds for Aquaculture. Birmingham Publishing Co. Birmingham, Alabama.
Cheng, J., Xu, J., Ye, Q., Lai, X., Zhang, X., & Zhou, J. (2019). Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo- bioreactor for improving microalgae growth. Bioresource Technology, 19:1-29. doi.org/10.1016/j.biortech.2019.01.019
Deendarlianto, Wiratni, Tontowi, A. E., Indarto, & Iriawan, A. G. W. (2015). The implementation of a developed microbubble generator on the aerobic wastewater treatment. International Journal of Technology, 6(6), 924–930. https://doi.org/10.14716/ijtech.v6i6.1696.
Duangjai, E., & Punroob, J. (2017). MNB-02 Growth Performance of Asian Sea Bass (Lates calcarifer Bloch) Using Micro Bubbles in Aquaponic System. Rajamangala University of Technology Lanna, 5-15.
Endo, A., Srithongouthai, S., Nashiki, H., Teshiba, I., Iwasaki, T., Hama, D., & Tsutsumi, H. (2008). DO-increasing effects of a microscopic bubble generating system in a fish farm. Marine Pollution Bulletin, 57(1–5), 78–85. https://doi.org/10.1016/j.marpolbul.2007.10.014
Febrianti, K., Sukarti., C. A., & Pebrianto. (2016). Pengaruh Perbedaan Sumber Asam Lemak pada Pakan Terhadap Pertumbuhan Ikan Bawal Bintang (Trachinotus blochii, lecepede). Jurnal Aquawarman. 2 : 24-33.
Foss, A., Vollen, T. & Iestad, V. (2003) Growth and oxygen consumption in normal and O2 supersaturated water, and interactive effects of O2 saturation and ammonia on growth in spotted wolffish (Anarhichas minor Olafsen). Aquaculture, 224, 105–116.
Gan, L., Liu, Y. J., Tian, L. X., Yue, Y. R., Yang, H. J., Liu, F. J., Chen, Y. J., & Liang, G. Y. (2013). Effects of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Aquaculture Nutrition, 19(6), 860–869. https://doi.org/10.1111/anu.12030
Glencross, B. (2009) Reduced water oxygen levels affect maximal feed intake, but not protein or energy utilization efficiency of rainbow trout (Oncorhynchus mykiss). Aquac. Nutr., 15, 1–8.
Hasan, V., Valen, F.S., Islamy, R.A., Widodo, M.S., Saptadjaja, A.M., Islam, I. (2021) Short Communication: presence of the vulnerable freshwater goby Sicyopus auxilimentus (Gobiidae, Sicydiinae) on Sangihe Island, Indonesia. Biodiversitas, 22:571-579. doi.org/10.13057/biodiv/d220208
Hasan V. & Islam I. 2020. First inland record of bull shark Carcharhinus leucas (Müller & Henle, 1839) (Carcharhiniformes: Carcharhinidae) in Celebes, Indonesia. Ecologica Montenegrina 38: 12-17. doi.org/10.37828/em.2020.38.3
Hasan, V. & Widodo M.S. (2020). Short Communication: The presence of Bull shark Carcharhinus leucas (Elasmobranchii: Carcharhinidae) in the fresh waters of Sumatra, Indonesia. Biodiversitas, 21(9):4433-4439. doi.org/10.13057/biodiv/d210962
Hepher, B., & Pruginin, Y. (1981). Comemrcial Fish Farming: With Special Reference to Fish Culture In Israel. John Wiley and Sons. New York.
Heriyati, E., Rustadi., Isnansetyo, A., & Triyatmo, B. (2020). Uji Aerasi Microbubble dalam Menentukan Kualitas Air, Nilai Nutrition Value Coefficient (NVC), Faktor Kondisi (K) dan Performa pada Budidaya Nila Merah (Oreocrhomis Sp.). Jurnal Pertanian Terpadu, 8:27-41. doi.org/10.36084/jpt..v8i1.232.
Hidayat, K. W., Supriyono, E., Djoko Setiyanto, D., Widiyati, A., & Kurniawan Hidayat, C. W. (2016). Effect of three simple design micro-pore aeration on growth and survival of hybrid catfish Pangasius sp. International Journal of Fisheries and Aquatic Studies, 4(4), 170–172. https://www.researchgate.net/publication/305208991
Ikeura, H., Takahashi, H., Kobayashi, F., Sato, M., & Tamaki, M. (2017). Effect of different microbubble generation methods on growth of Japanese mustard spinach. Journal of Plant Nutrition, 40(1), 115–127. https://doi.org/10.1080/01904167.2016.1201498
Iswara, V., Setiawan, A., Palupi, E. R., Purwanto, Y. A. (2018). Efektivitas Perlakuan Ultrafine Bubble Water dalam Mematahkan Dormansi Benih Padi, Penelitian Pertanian Tanaman Pangan, 2(3):137-143. dx.doi.org/10.21082/jpptp.v2n3
Jainontee, K., Norarat, R., Boonchuay, S., Thongdon-A, R., Unsing, A., Booncharoen, P., Janwong, W., & Wesanarat, P. (2019). Preliminary study of the effects of air-fine (Micro/nano) bubbles (fb) on the growth rate of tilapia in phan district, chiang rai, thailand. International Journal of Plasma Environmental Science and Technology, 12(2), 84–88.
Jefri, M., Satyantini., W. H., Sahidu, A. M., Nindarwi, D. D., & Rozi. (2020). Application of Probiotics for Organic Matter and Enhancement of Growth Performance in White Shrimp (Litopenaeus vannamei). Jurnal Ilmiah Perikanan dan Kelautan, 12(1):97-104. doi.org/10.20473/jipk.v12i1.16618
Khuntia, S., Majumder, S. K., Ghosh, P. (2012). Removal of Ammonia from Water by Ozone Microbubbles. ACS Publications, 52:318-326. doi.org/https://doi.org/10.1021/ie302212p
Mahasri, G., Saskia, A., Apandi, P.S., Dewi, N.N., Rozi., & Usuman, N.M. (2018). Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus). IOP Conference Series: Earth and Environmental Science, 137:1-9. doi.org/10.1088/1755-1315/137/1/012046
Mallya, Y. J. (2007). The Effect of Dissolved Oxygen on Fish Growth in Aquaculture. The United Nation Unive, 30.
Maskur. (2005). Kondisi kualitas lingkungan perairan umum di Jawa Barat. BBAT Sukabumi. 5 p.
Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M., Ali, B. S., Islam, M. S., & Hassan, M. A. A. (2012). Removal of total ammonia nitrogen ( TAN ), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology : 285:1-13. doi.org/10.1016/j.desal.2011.09.029
Mulyani, Y. S., Yulisman., & Fitrani, M. (2014). Pertumbuhan dan Efisiensi Pakan Ikan Nila (Oreochromis niloticus) Yang Dipuasakan Secara Periodik. Jurnal Akuakultur Rawa Indonesia, 2:1-9. doi.org/10.36706/jari.v2i1.1958
Nafisyah, A.L., Masithah, E.D., Matsuoka, K., Lamid, M., Alamsjah, M.A., O-hara, S., Koike, K. (2018). Cryptic occurrence of Chattonella marina var. marina in mangrove sediments in Probolinggo, East Java Province, Indonesia. Fisheries Science, 84(5):877-887. doi.org/10.1007/s12562-018-1219-0.
Onari, H., Maeda, K., Matsuo, K., Yamahara, Y., Watanabe, K., & Ishikawa, N. (2002). Effect of micro-bubble technique on oyster cultivation. Annual Journal of Hydraulic Engineering, 46: 1163-1168. doi.org/10.2208/prohe.46.1163.
Pangestika, W. & Putra, S. (2020). Fish Feed Formulation with the Addition of Sludge of Dairy Wastewater and Fermented Wheat Bran. Jurnal Ilmiah Perikanan dan Kelautan, 12(1):21-30. doi.org/10.20473/jipk.v12i1.18110
Pardamean, M.A., Islamy, R.A., Hasan, V., Herawati, E.Y., Mutmainnah, N. (2020). Identification and physiological characteristics of potential indigenous bacteria as bioremediation agent in the wastewater of sugar factory. Sains Malaysiana, 50(2), 279-286. dx.doi.org/10.17576/jsm-2021-5002-01
Park, J. S, Kurata, K. (2009). Preliminary and Regional Reports. Preliminary and Regional Reports, 19:2-5.
Pedersen, C.L. (1987) Energy budgets for juvenile rainbow trout at various oxygen concentrations. Aquaculture, 62, 289–298.
Petranich, E., Covelli, S., Acquavita, A., De Vittor, C., Faganeli, J., & Contin M. (2018). Benthic nutrient cycling at the sediment-water interface in a lagoon fish farming system (northern Adriatic Sea, Italy). Science of the Total Environment, 644:137-149. doi.org/10.1016/j.scitotenv.2018.06.310.
Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N. & Severe, A. (2000) Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture, 188, 103–114
Ren, F., Noda, N.A., Ueda, T., Sano,Y., Takase, Y., Umekage, T., & Tanaka, H. (2019). CFD-PBM approach for the gas-liquid flow in a nanobubble generator with honeycomb structure. Journal of Dispersion Science and Technology, 40:306-317. doi.org/10.1080/01932691.2018.1470009.
Retnani, H.T., & Abdulgani, N. (2013). Pengaruh Salinitas terhadap Kandungan Protein dan Pertumbuhan Ikan Bawal Bintang (Trachinotus blochii). Jurnal Sains dan Seni, 2:1-6. dx.doi.org/10.12962/j23373520.v2i2.4051
Rofik, D. A., Krdiman, Sumarjo, H. J., & Noubnome, V. (2020). Perancangan Dan Analisis Alat Microbubble Generator ( Mbg ). Journal Infrastructur and Science Engineering, 3(2), 24–30.
Salvanes, A. G. V., Christiansen, H., Taha, Y., Henseler, C., Seivåg, M. L., Kjesbu, O. S., Folkvord, A., Utne-Palm, A. C., Currie, B., Ekau, W., van der Plas, A. K., & Gibbons, M. J. (2018). Variation in growth, morphology and reproduction of the bearded goby (Sufflogobius bibarbatus) in varying oxygen environments of northern Benguela. Journal of Marine Systems, 188(xxxx), 81-97. doi.org/10.1016/j.jmarsys.2018.04.003
Saputra, H.K., Nirmala, K., Supriyono, E., & Rochman, N.T. (2018). Micro/Nano Bubble Technology : Characteristics and Implications Biology Performance of Koi Cyprinus carpio in Recirculation Aquaculture System (RAS). Jurnal Omni Akuatika, 14:29-36. dx.doi.org/10.20884/1.oa.2018.14.2.539
Smith, R.W., Houlihan. D.F., Nilsson, G.E. & Brechin, J.G. (1996) Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am. J. Physiol., 271, R897–R904.
SNI (Standar Nasional Indonesia). (2009). Produksi Induk Ikan Nila Hitam (Oreochromis niloticus Bleeker) Kelas Induk Pokok. Badan Standarisasi Nasional (BSN). Jakarta.
Spotte, S. (1979). Sea Water Aquarium. The Captive Environment. John Wiley and Sons. New York-Christer-Brisbane-Toronto.
Stickney, R. R. (1979). Principles of Warm Water Aquaculture. John Wiley and Sons Inc. New York. Pp 223 - 229.
Stickney, J. C., & Van Liere, E. J. (1953). Acclimatization to low oxygen tension. Physiological Reviews, 33:13-34. doi.org/10.1152/physrev.1953.33.1.13
Supriatna., Marsoedi., Hariati., Martinah, A., & Mahmudi M. (2017). Dissolved oxygen models in intensive culture of whiteleg shrimp, Litopenaeus vannamei, in East Java, Indonesia. AACL Bioflux, 10(4):768-778.
Tavares-Dias, M. (2021). Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture. Aquaculture, 535(October 2020), 736350. doi.org/10.1016/j.aquaculture.2021.736350
Thetmeyer, H., Waller, U., Black, K.D., Inselmann, S. & Rosenthal, H. (1999) Growth of European sea bass (Dicentrarchus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture, 174, 355–367
Tran-Duy, A., Schrama, J. W., van Dam, A. A., & Verreth, J. A. J. (2008). Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture, 275(1–4), 152–162. https://doi.org/10.1016/j.aquaculture.2007.12.024
Ushikuboa, Y., Furukawaa, T., Nakagawaa, R., Masatoshi, E., Makinoa, Y., Kawagoea, Y., & Oshitaa, S. (2010). Evidence of the existence and the stability of nano-bubbles in water, 361:31- 37. doi.org/https://doi.org/10.1016/j.colsurfa.2010.03.005.
Welker, T. L., Overturf, K., & Abernathy, J. (2019). Effect of aeration and oxygenation on growth and survival of rainbow trout in a commercial serial-pass, flow-through raceway system. Aquaculture Reports, 14(October 2018), 100194. https://doi.org/10.1016/j.aqrep.2019.100194
Wen, L. H., Ismail, A. Bin, Menon, P. M., Saththasivam, J., Thu, K., & Choon, N. K. (2011). Case studies of microbubbles in wastewater treatment. Desalination and Water Treatment, 30(1–3), 10–16. https://doi.org/10.5004/dwt.2011.1217
Yang, K., Fan, Q., Zhang, L., Li, B., Gao, Y., Zeng, K., Wang, Q., Zhu, S., & Fang, G. (2015). Effect of dissolved oxygen levels on growth performance, energy budget and antioxidant responses of yellow catfish, Pelteobagrus fulvidraco (Richardson). Aquaculture Research, 46(8), 2025–2033. https://doi.org/10.1111/are.12359
Zahidah., Masjamsir., & Iskandar. (2015). Pemanfaatan Teknologi Aerasi Berbasis Energi Surya Untuk Memperbaiki Kualitas Air dan Meningkatkan Pertumbuhan Ikan Nila Di KJA Waduk Cirata. Jurnal Akuatika, 6(1):68-78.
Zang, C., Huang, S., Wu M., Du S., Scholz, M., Gao, F., DongY. (2011). Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, and Soil Pollution, 219:157-174. DOI: https://doi.org/10.1007/s11270-010-0695-3
Copyright (c) 2024 Ren Fitriadi, Mustika Palupi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement