Optimizing Spare Parts Inventory Management of Truck Dealer Services using Forecasting Methods and Continuous Review System Approach
Downloads
A truck dealership company, specializing in maintenance, repair, and spare parts sales, faces stockout challenges that hinder its ability to meet demand for moving code 1 spare parts. The absence of effective forecasting methods and safety stock policies exacerbates these issues. This study aims to optimize inventory management by identifying suitable forecasting methods and implementing the Continuous Review System (CRS) to establish safety stock and reorder points as the parameter for procurement planning. The results indicate that the Double Exponential Smoothing (DES) method effectively predicts demand, while the Monte Carlo simulation method performs better for spare part 493051110L. The CRS approach improves the fill rate and reduces stockout risks, ensuring better inventory management for the company. These findings provide a framework for the company to enhance its spare parts inventory strategy, contributing to improved service reliability and operational efficiency.
Hubbard, T. N., dan Mazzeo, M. J. (2019). When Demand Increases Cause Shakeouts. American Economic Journal: Microeconomics, 11(4), 216–249. https://doi.org/10.1257/mic.20180040
Desfitrina, D., Zulfadhli, Z., dan Widarti, W. (2019). Good Service Strategies Affect Competitive Advantage. International Review of Management and Marketing, 9(6), 135–144. https://doi.org/10.32479/irmm
Abdulwase, R., Ahmed, F., Nasr, F., Abdulwase, A., Alyousofi, A., dan Yan, S. (2021). The role of business strategy to create a competitive advantage in the organization. Open Access Journal of Science, 4(4), 135–138. https://doi.org/10.15406/oajs.2020.04.00162
Barros, J., Cortez, P., dan Carvalho, M. S. (2021). A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process. Operations Research Perspectives, 8, 100192. https://doi.org/10.1016/j.orp.2021.100192
Nasution, A. A. (2020). Effect of inventory turnover on the level of profitability. IOP Conference Series: Materials Science and Engineering, 725(1), 012137. https://doi.org/10.1088/1757-899X/725/1/012137
Ezhil Kumar, M., Sharma, D. P., dan Tapar, A. V. (2021). Out-of-stock justifications and consumers’ behavioral outcomes– exploring the role of product type and sales level information in out-of-stock situations. Journal of Retailing and Consumer Services, 60, 102458. https://doi.org/10.1016/j.jretconser.2021.102458
Koos, S. E., dan Shaikh, N. I. (2019). Dynamics of consumers’ dissatisfaction due to stock-outs. International Journal of Production Economics, 208, 461–471. https://doi.org/10.1016/j.ijpe.2018.09.029
Kourentzes, N., Trapero, J. R., dan Barrow, D. K. (2020). Optimising forecasting models for inventory planning. International Journal of Production Economics, 225, 107597. https://doi.org/10.1016/j.ijpe.2019.107597
Fanisya, R. (2022). Penerapan Double Exponential Smoothing Dan Trend Analysis Dalam Peramalan Permintaan Kemasan Maintenance Box Di PT XYZ. Proceeding Seminar Nasional Teknologi Cetak Dan Media Kreatif (Tetamekraf), 1(2), 446–454. https://prosiding-old.pnj.ac.id/index.php/TETRAMEKRAF/article/view/4830
Surianingsih, G., Syafwan, H., dan Sapta, A. (2022). Forecasting Stok Sparepart Sepeda Motor Menggunakan Metode Double Exponential Smoothing(DES). JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(2), 1191. https://doi.org/10.30865/mib.v6i2.4028
Netika. (2022). Analisis WMA Pada Forcasting Persediaan Bahan Bangunan di CV. Edt Group. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(3), 1841–1851. https://doi.org/10.35957/jatisi.v9i3.2158
Suroso, F., Rahmah, G. M., dan Permana, D. R. A. (2023). Implementasi Sistem Peramalan Kebutuhan Spare Part Mobil Dengan WMA. Jurnal Teknologi dan Manajemen, 21(2), 113–122. https://doi.org/10.52330/jtm.v21i2.136
Eka Larasati Amalia, Yoppy Yunhasnawa, dan Rahmatanti, A. R. (2022). Sistem Prediksi Penjualan Frozen Food dengan Metode Monte Carlo (Studi Kasus: Supermama Frozen Food). Jurnal Buana Informatika, 13(02), 136–145. https://doi.org/10.24002/jbi.v13i02.6496
Apriliana Sari W., I., Isma P., B., dan Nurdiansyah, R. (2022). Forecasting Sales of Hex Nut Using Trend Linier Line (TLL) Methode and Monte Carlo Simulation in PT. KMS East Java. Tibuana, 5(01), 8–12. https://doi.org/10.36456/tibuana.5.01.4542.8-12
Yavuz, A. (2023). Spare part classification and inventory control improvement for case company.
Zhong, F. (2023). Application of ABC-Kraljic Classification in Inventory Management Within Traditional Small Foreign-Related Manufacturing Enterprises. In Proceedings of the 2022 3rd International Conference on Management Science and Engineering Management (ICMSEM 2022). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-038-1
Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36–45.
Nugraha, L. Y. (2021). Analisis Pengendalian Persediaan Komponen Brake Assy D14N dengan Metode MRP di PT Akebono Brake Astra Indonesia. Jurnal TeknikIndustri, 10(1), 1–9. https://doi.org/10.35968/jtin/v11i1/704
Budde, L., Liao, S., Haenggi, R., dan Friedli, T. (2022). Use of DES to develop a decision support system for lot size decision-making in manufacturing companies. Production & Manufacturing Research, 10(1), 494–518. https://doi.org/10.1080/21693277.2022.2092564
Babiloni, E., dan Guijarro, E. (2020). Fill rate: from its definition to its calculation for the continuous (s, Q) inventory system with discrete demands and lost sales. Central European Journal of Operations Research, 28(1), 35–43. https://doi.org/10.1007/s10100-018-0546-7
Adriel Silaen, T., dan Iskandar, Y. A. (2023). Inventory Management with Demand Forecast for Eyeglass Lenses Using The Time Series Method at An Optical Store. Journal of Emerging Supply Chain, Clean Energy, and Process Engineering, 2(2), 85–97. https://doi.org/10.57102/jescee.v2i2.65
Copyright (c) 2024 Rizky Astari Rahmania, Novera Indriani, Chandrawati Putri Wulandari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Journal of Advanced Technology and Multidiscipline (E-ISSN:2964-6162) by Universitas Airlangga, Faculty of Advanced Technology and Multidiscipline is licensed under a Creative Commons ” Attribution 4.0 International ” CC BY 4.0
Authors who publish with this journal agree to the following terms:
-
The journal allows the author to hold the copyright of the article without restrictions.
-
The journal allows the author(s) to retain publishing rights without restrictions.
-
The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).
LICENSE TERMS
You are free to:
- Share ” copy and redistribute the material in any medium or format
- Adapt ” remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms:
-
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits