Electrochemical Sensor and Biosensor Detection of Ethanol in Beverage Samples
Downloads
Ethanol detection is critical in the beverage industry, where it is essential to monitor alcohol concentrations for quality control and compliance with regulatory standards. Traditional analytical methods, such as gas chromatography and distillation, offer accuracy but are often labor-intensive, time-consuming, and require sophisticated equipment. In contrast, electrochemical sensors and biosensors have emerged as promising alternatives due to their rapid response, portability, cost-effectiveness, and potential for real-time monitoring. Electrochemical sensors, particularly those enhanced with metal nanoparticles like platinum, palladium, or gold, have shown significant improvements in sensitivity, selectivity, and response time. These sensors offer the advantage of miniaturization, making them ideal for on-site analysis, although issues such as electrode stability, susceptibility to interference, and long-term reliability remain. On the other hand, biosensors, which leverage biorecognition elements like alcohol dehydrogenase (ADH) or alcohol oxidase, provide high specificity for ethanol, reducing interference from other compounds commonly found in beverage samples. Recent advancements in biosensor technology have focused on improving sensor stability, enzyme immobilization techniques, and reducing production costs. While biosensors offer high selectivity and sensitivity, they may still face challenges related to enzyme denaturation and environmental factors such as temperature and pH fluctuations. Both electrochemical sensors and biosensors are continuously evolving, with recent developments including the use of nanomaterials and novel biorecognition elements to enhance performance. This review will explore recent advances in electrochemical sensors and biosensors for ethanol detection in beverage samples, highlighting their potential, challenges, and future directions in this field.
R. Room, T. Babor, and J. Rehm, “Alcohol and public health,” Lancet, vol. 365, no. 9458, pp. 519–530, Feb. 2005, doi: 10.1016/S0140-6736(05)17870-2.
S. K. Tulashie, A. P. Appiah, G. D. Torku, A. Y. Darko, and A. Wiredu, “Determination of methanol and ethanol concentrations in local and foreign alcoholic drinks and food products (Banku, Ga kenkey, Fante kenkey and Hausa koko) in Ghana,” Int. J. Food Contam., vol. 4, no. 1, pp. 1–5, 2017, doi: 10.1186/s40550-017-0059-5.
S. H. Mohd Azhar et al., “Yeasts in sustainable bioethanol production: A review,” Biochem. Biophys. Reports, vol. 10, pp. 52–61, Jul. 2017, doi: 10.1016/j.bbrep.2017.03.003.
L. V. Shkotova, T. B. Goriushkina, C. Tran-Minh, J. M. Chovelon, A. P. Soldatkin, and S. V. Dzyadevych, “Amperometric biosensor for lactate analysis in wine and must during fermentation,” Mater. Sci. Eng. C, vol. 28, no. 5–6, pp. 943–948, 2008, doi: 10.1016/j.msec.2007.10.038.
B. Stackler and E. N. Christensen, “Quantitative Determination of Ethanol in Wine by Gas chromatography,” Am. J. Enol. Vitic., vol. 25, no. 4, pp. 202–207, 1974, doi: 10.5344/ajev.1974.25.4.202.
T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu, and M. Shibukawa, “Determination of ethanol in alcoholic beverages by high-performance liquid chromatography–flame ionization detection using pure water as mobile phase,” J. Chromatogr. A, vol. 976, no. 1–2, pp. 387–391, Nov. 2002, doi: 10.1016/S0021-9673(02)00942-1.
C. Owuama, “Refractometric determination of ethanol concentration,” Food Chem., vol. 48, no. 4, pp. 415–417, 1993, doi: 10.1016/0308-8146(93)90327-C.
O. L. Chapman and R. W. King, “Classification of Alcohols by Nuclear Magnetic Resonance Spectroscopy,” J. Am. Chem. Soc., vol. 86, no. 6, pp. 1256–1258, Mar. 1964, doi: 10.1021/ja01060a068.
L. V. Shkotova, A. P. Soldatkin, M. V. Gonchar, W. Schuhmann, and S. V. Dzyadevych, “Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film,” Mater. Sci. Eng. C, vol. 26, no. 2–3, pp. 411–414, Mar. 2006, doi: 10.1016/j.msec.2005.10.031.
A. Atikah, “PENYISIHAN LOGAM DALAM LIMBAH CAIR KERAJINAN TENUN SONGKET DENGAN METODE ELEKTROKIMIA,” J. Redoks, vol. 6, no. 1, p. 17, Jun. 2021, doi: 10.31851/redoks.v6i1.5613.
R. Andreu, E. E. Ferapontova, L. Gorton, and J. J. Calvente, “Direct Electron Transfer Kinetics in Horseradish Peroxidase Electrocatalysis,” J. Phys. Chem. B, vol. 111, no. 2, pp. 469–477, Jan. 2007, doi: 10.1021/jp064277i.
T. Gu, J. Wang, H. Xia, S. Wang, and X. Yu, “Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film,” Materials (Basel)., vol. 7, no. 2, pp. 1069–1083, Feb. 2014, doi: 10.3390/ma7021069.
A. Salimi, E. Sharifi, A. Noorbakhsh, and S. Soltanian, “Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide,” Biophys. Chem., vol. 125, no. 2–3, pp. 540–548, Feb. 2007, doi: 10.1016/j.bpc.2006.11.004.
B. Kuswandi, Sensor Kimia: Teori, Praktek, dan Aplikasi. Jember: Universitas Jember, 2013.
F. W. Fifield and P. J. Haines, Environmental analytical chemistry 2nd Edition. london: Wiley-Blackwell., 2000.
A. P. F. Turner, I. Karube, and G. S. Wilson, Biosensors: Fundamentals and Applications. Oxford University Press, 1989.
A. J. Bard and L. R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. John Wiley & Sons, 2000.
A. Hulanicki, S. Glab, and F. Ingman, “Chemical sensors definitions and classification,” Pure Appl. Chem., vol. 63, no. 9, pp. 1247–1250, 1991, doi: 10.1351/pac199163091247.
J. Fraden, Handbook of Modern Sensors. 2016.
K. Mitsubayashi, O. Niwa, and Y. Ueno, Chemical, Gas, and Biosensors for Internet of Things and Related Applications. Elsevier, 2019.
A. Barhoum and Z. Altinas, Advanced Sensor Technology. Elsevier, 2023.
D. Harvey, Modern Analytical Chemistry. McGraw-Hill, 2000.
M. N. Islam and R. B. Channon, Electrochemical sensors. Elsevier Ltd., 2019.
N. Z. N. Aqmar, W. F. H. Abdullah, Z. M. Zain, and S. Rani, “Embedded 32-bit Differential Pulse Voltammetry (DPV) Technique for 3-electrode Cell Sensing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 340, no. 1, 2018, doi: 10.1088/1757-899X/340/1/012016.
N. K. Bakirhan, B. Uslu, and S. A. Ozkan, “Sensitive and Selective Assay of Antimicrobials on Nanostructured Materials by Electrochemical Techniques,” in Nanostructures for Antimicrobial Therapy, Elsevier, 2017, pp. 55–83.
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J. Chem. Educ., vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/acs.jchemed.7b00361.
D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis. Cengage Learning, 2017.
P. Chooto, “Cyclic Voltammetry and Its Applications,” in Voltammetry, IntechOpen, 2019.
G. Walker and G. Stewart, “Saccharomyces cerevisiae in the Production of Fermented Beverages,” Beverages, vol. 2, no. 4, p. 30, Nov. 2016, doi: 10.3390/beverages2040030.
Y.-C. Weng and T.-C. Chou, “Ethanol sensors by using RuO2-modified Ni electrode,” Sensors Actuators B Chem., vol. 85, no. 3, pp. 246–255, Jul. 2002, doi: 10.1016/S0925-4005(02)00125-9.
B. Tao, J. Zhang, S. Hui, and L. Wan, “An amperometric ethanol sensor based on a Pd–Ni/SiNWs electrode,” Sensors Actuators B Chem., vol. 142, no. 1, pp. 298–303, Oct. 2009, doi: 10.1016/j.snb.2009.08.004.
Y. Liu, L. Zhang, Q. Guo, H. Hou, and T. You, “Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode,” Anal. Chim. Acta, vol. 663, no. 2, pp. 153–157, Mar. 2010, doi: 10.1016/j.aca.2010.01.061.
L.-P. Jia and H.-S. Wang, “Preparation and application of a highly sensitive nonenzymatic ethanol sensor based on nickel nanoparticles/Nafion/graphene composite film,” Sensors Actuators B Chem., vol. 177, pp. 1035–1042, Feb. 2013, doi: 10.1016/j.snb.2012.12.030.
I. Feliciano-Ramos, E. O. Ortiz-Quiles, L. Cunci, D. C. Díaz-Cartagena, O. Resto, and C. R. Cabrera, “Unsupported palladium nanoparticles for ethanol cyclic voltammetric sensing in alkaline media,” J. Solid State Electrochem., vol. 20, no. 4, pp. 1011–1017, Apr. 2016, doi: 10.1007/s10008-015-3046-x.
J. Shi et al., “Pd/Ni/Si-microchannel-plate-based amperometric sensor for ethanol detection,” Electrochim. Acta, vol. 56, no. 11, pp. 4197–4202, Apr. 2011, doi: 10.1016/j.electacta.2011.01.096.
E. Tavakolian, J. Tashkhourian, Z. Razmi, H. Kazemi, and M. Hosseini-Sarvari, “Ethanol electrooxidation at carbon paste electrode modified with Pd–ZnO nanoparticles,” Sensors Actuators B Chem., vol. 230, pp. 87–93, Jul. 2016, doi: 10.1016/j.snb.2016.02.006.
M. M. Pereira Silva Neves et al., “A non-enzymatic ethanol sensor based on a nanostructured catalytic disposable electrode,” Anal. Methods, vol. 9, no. 35, pp. 5108–5114, 2017, doi: 10.1039/C7AY01078H.
P. D. Thungon, A. Kakoti, L. Ngashangva, and P. Goswami, “Advances in developing rapid, reliable and portable detection systems for alcohol,” Biosens. Bioelectron., vol. 97, pp. 83–99, Nov. 2017, doi: 10.1016/j.bios.2017.05.041.
Ü. A. Kirgöz et al., “A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection,” Anal. Chim. Acta, vol. 570, no. 2, pp. 165–169, Jun. 2006, doi: 10.1016/j.aca.2006.04.010.
S. Soylemez, S. Goker, and L. Toppare, “A promising enzyme anchoring probe for selective ethanol sensing in beverages,” Int. J. Biol. Macromol., vol. 133, pp. 1228–1235, Jul. 2019, doi: 10.1016/j.ijbiomac.2019.05.001.
S. Prasanna Kumar, L. Parashuram, D. P. Suhas, and P. Krishnaiah, “Carboxylated graphene-alcohol oxidase thin films modified graphite electrode as an electrochemical sensor for electro-catalytic detection of ethanol,” Mater. Sci. Energy Technol., vol. 3, pp. 159–166, 2020, doi: 10.1016/j.mset.2019.10.009.
S. Cinti, M. Basso, D. Moscone, and F. Arduini, “A paper-based nanomodified electrochemical biosensor for ethanol detection in beers,” Anal. Chim. Acta, vol. 960, pp. 123–130, Apr. 2017, doi: 10.1016/j.aca.2017.01.010.
V. Hooda, V. Kumar, A. Gahlaut, and V. Hooda, “Alcohol quantification: recent insights into amperometric enzyme biosensors,” Artif. Cells, Nanomedicine, Biotechnol., vol. 46, no. 2, pp. 398–410, Feb. 2018, doi: 10.1080/21691401.2017.1315426.
Ş. Alpat and A. Telefoncu, “Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode,” Sensors, vol. 10, no. 1, pp. 748–764, Jan. 2010, doi: 10.3390/s100100748.
A. P. Periasamy, Y. Umasankar, and S.-M. Chen, “Toluidine blue adsorbed on alcohol dehydrogenase modified glassy carbon electrode for voltammetric determination of ethanol,” Talanta, vol. 83, no. 3, pp. 930–936, Jan. 2011, doi: 10.1016/j.talanta.2010.10.058.
K.6, K. Qian, S. Zhang, J. Kong, C. Yu, and B. Liu, “Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes,” Talanta, vol. 85, no. 2, pp. 1174–1179, Aug. 2011, doi: 10.1016/j.talanta.2011.05.038.
M. Bilgi and E. Ayranci, “Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: Ethanol biosensors based on alcohol dehydrogenase,” Sensors Actuators B Chem., vol. 237, pp. 849–855, Dec. 2016, doi: 10.1016/j.snb.2016.06.164.
Copyright (c) 2025 Irkham Irkham, Faizal Nur Zalfadilah, Muhammad Ihda Hamlu Liwaissunati Zein, Wulan Khaerani, Salma Nur Zakiyyah, Yeni Wahyuni Hartati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Journal of Advanced Technology and Multidiscipline (E-ISSN:2964-6162) by Universitas Airlangga, Faculty of Advanced Technology and Multidiscipline is licensed under a Creative Commons ” Attribution 4.0 International ” CC BY 4.0
Authors who publish with this journal agree to the following terms:
-
The journal allows the author to hold the copyright of the article without restrictions.
-
The journal allows the author(s) to retain publishing rights without restrictions.
-
The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY).
LICENSE TERMS
You are free to:
- Share ” copy and redistribute the material in any medium or format
- Adapt ” remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms:
-
Attribution ” You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions ” You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits