Fibrinolytic Protease Production: Impact of Initial pH and Temperature in Solid-State Fermentation by Rhizopus microsporus var. oligosporus FNCC 6010
Downloads
Background: Fibrinolytic enzyme is one of the cardiovascular disease therapies. Rhizopus microsporus var. oligosporus is microorganism that has been evaluated to produce fibrinolytic protease by fermentation. This study conducted fermentation of helianthi annui semen (sunflower seed) by Rhizopus microsporus var. oligosporus to produce fibrinolytic enzyme. Objective: This study aims to determine the effect of Initial pH and incubation temperature and its optimization in the production of fibrinolytic protease by Rhizopus microsporus var. oligosporus FNCC 6010 in solid-state fermentation on helianthi annui semen (sunflower seed) substrate. Optimum condition was determined by maximum protease and fibrinolytic activity. Method: A crude enzyme of protease fibrinolytic was obtained from the supernatant extract of fermented sunflower seed. Protease activity was measured by the skimmed milk agar (SMA) plate method, and fibrinolytic activity was determined by the fibrin agar plate method. Result: It was found that the starting pH affects both the proteolytic and fibrinolytic activity of enzymes that are produced in fermentation. The starting pH of 5.0 showed higher fibrinolytic and proteolytic activity values compared to the starting pH of 7.0. The incubation temperature 33±1 °C had the higher activity compared to 28±1 °C or 37±1 °C. Conclusion: Initial pH and incubation temperature affect the proteolytic and fibrinolytic activity of crude enzyme extracted from fermented sunflower seed by Rhizopus microsporus var. oligosporus. The optimum condition for producing fibrinolytic protease in the state fermentation method was an initial pH of 5.0 and an incubation temperature of 33±1°C.
Ahamed, N. A., Arif, I. A., Al-rashed, S., Panneerselvam, A., & Ambikapathy, V. (2022). In Vitro Thrombolytic Potential of Fibrinolytic Enzyme from Brevibacterium sp . Isolated from the Root of the Plant, Aloe castellorum. Journal of King Saud University - Science; 34; 1-6. doi: 10.1016/j.jksus.2022.101868.
Altaf, F., Wu, S. & Kasim, V. (2021). Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Frontiers in Molecular Biosciences; 8; 1–17. doi: 10.3389/fmolb.2021.680397.
Anusree, M., Swapna, K., Aguilar, C. N. & Sabu, A. (2020). Optimization of Process Parameters for the Enhanced Production Of Fibrinolytic Enzyme by a Newly Isolated Marine Bacterium. Bioresource Technology Reports; 11; 1-7. doi: 10.1016/j.biteb.2020.100436.
Benabda, O., Sana, M., Kasmi, M., Mnif, W. & Hamdi, M. (2019). Optimization of Protease and Amylase Production by Rhizopus oryzae Cultivated on Bread Waste Using Solid-State Fermentation. Journal of Chemistry; 2019; 1-10. doi: 10.1155/2019/3738181.
BoratyÅ„ski, F., SzczepaÅ„ska, E., Grudniewska, A., GniÅ‚ka, R. & Olejniczak, T. (2018). Improving of Hydrolases Biosythesis by Solid-State Fermentation of Penicillium camemberti on Rapeseed Cake. Scientific Reports; 8; 1–9. doi: 10.1038/s41598-018-28412-y.
Dwiatmaka, Y., Yuniarti, N., Lukitaningsih, E. & Wahyuono, S. (2022). Fermentation of Soybean Seeds Using Rhizopus Oligosporus for Tempeh Production and Standardization Based on Isoflavones Content. International Journal of Applied Pharmaceutics; 14; 131–136. doi: 10.22159/ijap.2022v14i6.43785.
Grasso, S., Pintado, T., Pérez-Jiménez, J., Ruiz-Capillas, C. & Herrero, A. M. (2020). Potential of a Sunflower Seed by-Product as Animal Fat Replacer in Healthier Frankfurters. Foods; 9; 1–14. doi: 10.3390/foods9040445.
Haq, I. U. & Mukhtar, H. (2004). Biosynthesis of Proteases by Rhizopus oligosporus IHS13 in Low-Cost Medium by Solid-State Fermentation. Journal of Basic Microbiology; 44; 280–287. doi: 10.1002/jobm.200410393.
Hariyono, C. M., Yunianta, Harijono, Sriherwanto, C., Suja'i, I., Nadaviana, A., Junaedi, H., Ma'hadah, R. & Komarudin. (2021). Physico-chemical Characteristics of Rhizopus sp.-Fermented Fish Feed Pellets Containing Black Soldier Fly Larvae (Hermetia illucens) Meal. IOP Conference Series: Earth and Environmental Science; 744; 1-10. doi: 10.1088/1755-1315/744/1/012024.
Hermansyah, B., Lokapirnasari, W. P. & Fikri, F. (2019). Pengaruh Subtitusi Tepung Biji Bunga Matahari (Helianthus annuus L.) dalam Pakan Komersial dengan Konsentrasi Tertentu Terhadap Performa Ayam Pedaging. Jurnal Medik Veteriner; 2; 7-12. doi: 10.20473/jmv.vol2.iss1.2019.7-12.
Karefyllakis, D., van der Goot, A. J. & Nikiforidis, C. V. (2019). Multicomponent Emulsifiers from Sunflower Seeds. Current Opinion in Food Science; 29; 35–41. doi: 10.1016/j.cofs.2019.07.005.
Kotb, E. (2015). Purification and Partial Characterization of Serine Fibrinolytic Enzyme from Bacillus megaterium KSK-07 Isolated from Kishk, a Traditional Egyptian Fermented Food. Applied Biochemistry and Microbiology; 51; 34–43. doi: 10.1134/S000368381501007X.
Kotb, E. (2013). Activity Assessment of Microbial Fibrinolytic Enzymes. Applied Microbiology and Biotechnology; 97; 6647–6665. doi: 10.1007/s00253-013-5052-1.
Kotb, E. (2014). Purification and Partial Characterization of a Chymotrypsin-Like Serine Fibrinolytic Enzyme from Bacillus amyloliquefaciens FCF-11 Using Corn Husk as a Novel Substrate. World Journal of Microbiology and Biotechnology; 30; 2071–2080. doi: 10.1007/s11274-014-1632-1.
Krishnamurthy, A., Belur, P. D. & Subramanya, S. B. (2018). Methods Available to Assess Therapeutic Potential of Fibrinolytic Enzymes of Microbial Origin: a Review. Journal of Analytical Science and Technology; 9; 1-11. doi: 10.1186/s40543-018-0143-3.
Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H. & Stahl, D. A. (2015). Microbial Growth and Control. In Brock Biology of Microorganisms. Boston: Pearson.
Miglani, K., Kumar, R., Panwar, S. & Kumar, A. (2017). Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. Journal of Genetic Engineering and Biotechnology; 15; 115-126. doi: 10.1016/j.jgeb.2017.02.001.
Muhammed, A., Ali, M., Charan, S. & Bavisetty, B. (2020). Purification, Physicochemical Properties, and Statistical Optimization of Fibrinolytic Enzymes Especially from Fermented Foods: A Comprehensive Review. International Journal of Biological Macromolecules; 163; 1498–1517. doi: 10.1016/j.ijbiomac.2020.07.303.
Nout, M. J. R. & Kiers, J. L. (2005). Tempe Fermentation, Innovation and Functionality: Update Into the Third Millenium. Journal of Applied Microbiology; 98; 789-805. doi: 10.1111/j.1365-2672.2004.02471.x.
Poernomo, A. T., Isnaeni, & Purwanto. (2017). Thrombolytic Activity of Fibrinolytic Enzyme from Black Soybean Tempeh (Glycine Soja Sieb. Et Zucc) Fermented by Rhizopus Oligosporus FNCC 6010. Research Journal of Pharmaceutical, Biological and Chemical Sciences; 8; 1885–1896.
Raju, E. V. N. & Divakar, G. (2014). An Overview on Microbial Fibrinolytic Proteases. International Journal of Pharmaceutical Sciences and Research; 5; 643–656. doi: 10.13040/IJPSR.0975-8232.5(3).643-56.
Rashad, M. M., Mahmoud, A. E., Al-Kashef, A. S. & Nooman, M. U. (2012). Purification and Characterization of a Novel Fibrinolytic Enzyme by Candida guilliermondii Grown on Sunflower Oil Cake. Journal of Applied Sciences Research; 8; 635–645.
Rauf, A., Irfan, M., Nadeem, M. & Ahmed, I. (2010). Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus through Solid State Fermentation of Sunflower Meal. International Scholarly and Scientific Research & Innovation; 4; 898–901.
Sada, A., Sugianto, N. E., & Poernomo, A. T. (2021). Produksi Enzim Fibrinolitik Tempe oleh Rhizopus oryzae FNCC 6078. Berkala Ilmiah Kimia Farmasi; 8; 1-6. doi: 10.20473/bikfar.v8i1.31202.
Sambo, S., Magashi, A. M., Farouq, A. A. & Hassan, S. W. (2021). An Overview of the Solid State Fermentation in the Production of Fungal Protease Enzymes. World Journal of Advanced Research and Reviews; 9; 85–89. doi: 10.30574/wjarr.2021.9.3.0061.
Sarao, L. K., Arora, M., Sehgal, V. K., & Bhatia, S. (2010). Production of Protease by Submerged Fermentation Using Rhizopus microsporus var oligospous. Internet Journal of Microbiology; 9; 1-11.
Sharma, C., Osmolovskiy, A., & Singh, R. (2021). Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics; 13; 1-32. doi: 10.3390/pharmaceutics13111880.
Srivastava, N., Srivastava, M., Ramteke, P. W. & Mishra, P. K. (2019). Solid-State Fermentation Strategy for Microbial Metabolites Production: An Overview. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications; 2019; 345–354. doi: 10.1016/B978-0-444-63504-4.00023-2.
Susanti, E., Lutfiana, N. Suharti & Retnosari, R. (2019). Screening of Proteolytic Bacteria from Tauco Surabaya based on Pathogenicity and Selectivity of its Protease on Milky Fish (Chanos chanos) Scales for Healthy and Halal Collagen Production. IOP Conference Series: Materials Science and Engineering; 509; 1-7. doi: 10.1088/1757-899X/509/1/012044.
Xiao-Lan, L., Lian-Xiang, D., Fu-Ping, L., Xi-Qun, Z. & Jing, X. (2005). Purification and Characterization of a Novel Fibrinolytic Enzyme from Rhizopus chinensis 12. Applied Microbiology and Biotechnology; 67; 209–214. doi: 10.1007/s00253-004-1846-5.
Zhang, S., Wang, Y., Zhang, N., Sun, Z., Shi, Y., Cao, X. & Wang, H. (2015). Purification and Characterisation of a Fibrinolytic Enzyme from Rhizopus microsporus var. tuberosus. Food Technology and Biotechnology; 53; 243–248. doi: 10.17113/ftb.53.02.15.3874.
Copyright (c) 2023 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement