Artificial Intelligence Governance and Regulation: A Roadmap to Developing Legal Policies for Artificial Intelligence Deployment
Downloads
Abstract
The rapid advancement of artificial intelligence (AI) presents substantial challenges for global regulation and governance. This study explores various approaches adopted by countries and industries in formulating legal policies that promote the responsible and innovative use of AI. It examines regulatory frameworks in the European Union, the United States, and China, alongside the deployment of AI in the automotive and healthcare sectors. Empirical evidence suggests that stringent regulations, such as those in the European Union, enhance legal clarity and foster public trust but impose higher compliance costs and hinder innovation. Conversely, the United States' more lenient approach promotes innovation but leads to legal ambiguity. Key global challenges, including standards harmonization, algorithm transparency, and accountability, remain critical issues for stakeholders. The study concludes by emphasizing the need for an equilibrium between innovation and regulation, achieved through international collaboration to establish robust, secure, and sustainable AI governance frameworks.
Keywords: Artificial Intelligence, AI policy, AI governance, AI regulation
Abstrak
Pesatnya perkembangan kecerdasan buatan (AI) membawa tantangan yang signifikan dalam hal regulasi dan tata kelola global. Artikel ini bertujuan untuk memeriksa pendekatan berbagai negara dan industri dalam mengembangkan kebijakan hukum yang mendukung penerapan AI yang bertanggung jawab dan inovatif. Studi ini menyoroti peraturan di Uni Eropa, Amerika Serikat, dan Cina, serta penerapan AI di sektor otomotif dan perawatan kesehatan. Data empiris menunjukkan bahwa meskipun peraturan yang ketat, seperti di Uni Eropa, memberikan kejelasan hukum dan meningkatkan kepercayaan publik, itu juga menambah beban biaya dan memperlambat inovasi. Di sisi lain, pendekatan yang lebih longgar di Amerika Serikat mendorong inovasi tetapi menciptakan ketidakpastian hukum. Tantangan global dalam harmonisasi standar, transparansi algoritma, dan akuntabilitas adalah masalah utama yang harus ditangani oleh para pemangku kepentingan. Artikel ini menyimpulkan bahwa keseimbangan antara inovasi dan regulasi diperlukan melalui kolaborasi internasional untuk menciptakan tata kelola AI yang tangguh, aman, dan berkelanjutan.
Kata kunci: Kecerdasan Buatan, kebijakan AI, Tata Kelola AI, dan Regulasi AI.
Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149-159.
Brundage, M., Avin, S., Wang, J., Krueger, G., Hadfield, G., & Dafoe, A. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228.
Brynjolfsson, E., & McAfee, A. (2017). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
Calo, R. (2017). Artificial intelligence policy: A primer and roadmap. University of California, Davis Law Review, 51(2), 399-435.
Chui, M., Manyika, J., & Miremadi, M. (2020). The future of work in Europe: Automation, labor markets, and the need for policy action. McKinsey & Company Report.
Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56-62.
European Commission. (2021). Proposal for a regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. Brussels: European Commission.
Fjeld, J., Achten, N., Hilligoss, H., Nagy, A. C., & Srikumar, M. (2020). Principled artificial intelligence: Mapping consensus in ethical and rights-based approaches to principles for AI. Berkman Klein Center for Internet & Society, Research Publication No. 2020-1.
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1).
McKinsey & Company. (2022). The road to full autonomy: How autonomous vehicles are changing the future of driving. McKinsey Report.
Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press.
Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. International Data Privacy Law, 7(2), 76-99.
World Health Organization (WHO). (2022). Telemedicine and artificial intelligence in healthcare: Implications for healthcare delivery. WHO Report.
Zeng, Y., Lu, E., & Huangfu, C. (2021). Linking artificial intelligence principles. Nature Machine Intelligence, 3, 104-110.
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Governance and Administrative Reform by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).