PENDEKATAN IN SILICO DALAM MENYINGKAP POTENSI ANTIKANKER MECIADANOL
Downloads
Meciadanol merupakan flavanol katekin termetilasi pada posisi C3 yang mampu menghambat pembentukan histamin oleh histidin dekarboksilase. Senyawa ini merupakan target menarik dalam pengembangan agen antikanker karena histamin diketahui terlibat dalam perkembangan kanker. Histamin juga dilaporkan dapat berkaitan dengan death associated protein kinase 1 (DAPK1) yang berhubungan dengan apoptosis. Penelitian ini mempelajari potensi aktivitas antikanker meciadanol terhadap DAPK1 secara in silico. Penambatan molekul terhadap protein DAPK1 (kode 5AUX dan 5AV3) dilakukan dengan Autodock Vina yang dilanjutkan dengan evaluasi sifat fisikokimia dan profil ADMET menggunakan SwissADME dan pkCSM. Nilai afinitas ikatan meciadanol terhadap 5AUX dan 5AV3 masing-masing sebesar -7,4 kkal/mol dan -7,0 kkal/mol. Meciadanol selanjutnya tidak melanggar aturan Lipinski, Ghose, Veber, Egan dan Muegge, dan memiliki profil ADMET yang baik berdasarkan deskriptor evaluasi.
Allen WJ, Rizzo RC., 2014, Implementation of The Hungarian Algorithm to Account for Ligand Symmetry and Similarity in Structure-based Design, J. Chem. Inf. Model., 54(2), 518–529.
Blake JF, 2000, Chemoinformatics-predicting the Physicochemical Properties of "drug-like” Molecules, Curr. Opin. Biotechnol., 11(1), 104–107.
Branco A, Yoshikawa, FSY, Pietrobon AJ, Sato, MN, 2018, Role of Histamine in Modulating the Immune Response and Inflammation, Mediat. Inflamm., 2018, 9524075.
Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L., 2007, Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge, J. Chem. Inf. Model., 47, 2140–2148.
Chico LK, Van Eldik LJ, Watterson DM, 2009, Targeting Protein Kinases in Central Nervous System Disorders, Nat. Rev. Drug Discov., 8(11), 892–909.
Cole JC, Nissink JWM, Taylor R, 2005, Protein-ligand Docking and Virtual Screening with GOLD in Virtual Screening in Drug Discovery, 1st Ed. Taylor & Francis CRC Press, 379–415.
Daina A, Michielin O, Zoete V., 2017, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 1–13.
Daina A, Zoete V., 2016, A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem, 11, 1117-1121.
Dallakyan S, Olson AJ., 2015, Small-Molecule Library Screening by Docking with PyRx, in Chemical Biology: Methods in Molecular Biology, vol. 1263, J. E. Hempel, C. H. Williams, and C. C. Hong, Eds. New York, NY: Springer New York, 243–250.
Drie JH, 2005, Pharmacophore-Based Virtual Screening: A Partical Prespective. in Virtual Screening in Drug Discovery, J. Alvarez & B. Shoichet, Eds. 1st Ed. Taylor & Francis CRC Press.
Egan WJ, Merz KM, Baldwin JJ., 2000, Prediction of Drug Absorption Using Multivariate Statistics, J. Med. Chem., 43, 3867–3877.
Ghose AK, Viswanadhan VN, Wendoloski JJ., 1999, A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases, J. Comb. Chem, 1, 55–68.
Jász Á, Rák Á, Ladjánszki I, Cserey G., 2019, Optimized GPU Implementation of Merck Molecular Force Field and Universal Force Field, J. Mol. Struct., 1188, 227–233.
Konturek SJ., Kitler, ME, Brzozowski T, Radecki T., 1986, Gastric Protection by Meciadanol A New Synthetic flavonoid-Inhibiting Histidine Decarboxylase, Dig. Dis. Sci., 31(8), 847-852.
Lipinski CA, 2000, Drug-like Properties and the Causes of Poor Solubility and Poor Permeability, J. Pharmacol. Toxicol. Methods, 44(1), 235–249.
Mirzaei H, Zarbafian S, Villar E, Mottarella S, Beglov D, Vajda S, Paschalidis IC, Vakili P, Kozakov D., 2015, Energy Minimization on Manifolds for Docking Flexible Molecules, J. Chem. Theory Comput., 11(3), 1063–1076.
Moya-García AA, Pino-Ángeles A, Sánchez-Jiménez F, Urdiales JL, Medina MA, 2021, Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach, Biomolecules, 11, 415.
Muegge I, Heald SL, Brittelli D., 2001, Simple Selection Criteria for Drug-like Chemical Matter,” J. Med. Chem., 44, 1841–1846.
Nguyen PH, Cho, J., 2021, Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets, Biomolecules, 11(1232), 1-26.
Nukata M, Hashimoto T, Yamamoto I, Iwasaki N, Tanaka M, Asakawa Y, 2002, Neogrifolin Derivatives Possessing Anti-Oxidative Activity from The Mushroom Albatrellus ovinus, Phytochemistry, 59, 731-737.
Park K., 2019, A Review of Computational Drug Repurposing, Transl. Clin. Pharmacol., 27(2); 59-63.
Pires DEV, Blundell TL, Ascher DB., 2015, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures, J. Med. Chem., 58, 4066-4072.
Salahudeen MS, Nishtala PS., 2017, An Overview of Pharmacodynamic Modelling, Ligand-binding Approach and Its Application in Clinical Practice, Saudi Pharm. J., 25(2), 165–175.
Trott O, Olson AJ., 2009, AutoDock Vina: Improving the Speed and Accuracy of Docking with A New Scoring Function, Efficient Optimization, and Multithreading, J. Comp. Chem, 31(2), 455–461.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward, KW, Kopple KD., 2002, Molecular Properties That Influence the Oral Bioavailability of Drug Candidates, J. Med. Chem., 45, 2615–2623.
Wildman SA, Crippen GM., 1999, Prediction of Physicochemical Parameters by Atomic Contributions, J. Chem. Inf. Model. 39, 868–873.
Ye M, Luo X, Li L, Shi Y, Tan M, Weng X, Li W, Liu J, Cao Y, 2007, Grifolin, A Potential Antitumor Natural Product from The Mushroom Albatrellus confluens, Induces Cell-cycle Arrest in G1 Phase via The ERK1/2 pathway, Cancer Lett., 258, 199-207.
Yokoyama T, Kosaka, Y, Mizuguchi, M, 2015, Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids, J. Med. Chem., 58(18), 7400–7408.
Wu Z, Li, Y., 2017, Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells, Oncotarget, 8, 21454-21460.
Copyright (c) 2021 Jurnal Kimia Riset
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.