ZEOLITIZATION OF COAL WASTE AS Cu(II) ION ADSORBENT
Downloads
TZeolization of coal waste was carried out as an adsorbent for Cu(II) ions. Fly ash tailings were collected from Lati Steam Power Plant (SPP) Berau and tested using SEM instruments, X-ray diffraction and AAS. Synthetic zeolites are prepared by hydrothermal reaction under alkaline and alkaline conditions. Characterization of the synthetic zeolite using SEM has formed a zeolite material with a pore size >10 µm and shows an increase in the amount of Na from 3.06% to 11.82%. XRD results show that Na-P1 zeolite is formed at the main top of 2θ16, 30, 33, 10 and 40, 80, and the relative intensities are 34, 31 and 36, respectively. In addition, elemental materials such as silica and mullite are continuously formed on the main top of 2θ26.50 and 26.10, the relative strength of silica is 100, and the relative strength of mullite is 57.9. The optimum adsorption capacity of zeolite for maximum copper ion was 80.330% at pH=4, 97.958% at 150 mg adsorbent weight, and 94.550% at 50 min contact time. The formation of these new materials significantly improved the adsorption capacity of fly ash under optimal conditions of pH = 4, sorbent weight of 150 mg, and contact time of 50 min.
Menteri Negara dan Lingkungan Hidup., 1995, Keputusan menteri Negara dan Lingkungan Hidup No. Kep-51/Menlh/10/1995 tentang Baku Mutu Limbah Cair Kegiatan Industri.
Achmad, R., 2004, Kimia Lingkungan. Jakarta UNJ.
Barrer, 1982, Hydrothermal Chemistry of Zeolites. Academic press Inc. London.
Bendiyasa IM., 2004, Penggunaan fly ash sebagai adsorben dalam pemungutan logam Cd(II) dari air limbah simulasi : studi kesetimbangan. Laporan penelitian teknologi kimia umum, jurusan teknik kimia. Fakultas Teknik, Universitas Gajah Mada.
Bergaya F., 1997, CEC of clays. Measurement by adsorption of copper ethylendiamine complex. Applied clay science 12:275-280.
Bicer, A., 2018, Effect of fly ash particle size on thermal and mechanical properties of fly ash-cement composites. Thermal Science and Engineering Progress, 8, 78–82.
Chunfeng, Wang., 2009, Evaluation of zeolites synthesized from fly ash potential adsorbents for wastewater containing heavy metals, Journal of environmental sciences, P.127-136.
Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., & Abu-Zahra, M. R. M., 2019, Applications of fly ash for CO2 capture, utilization, and storage. In Journal of CO2 Utilization (Vol. 29, pp. 82–102). Elsevier Ltd.
Dursun, 2005, Adsorption of phenol from aqueous solution by using carbonised beet pulp. Journal of Hazardous Materials. Vol 125 no. 1-3.
Fitri R., 2005, Adsorpsi zat warna tekstil Remazol Zellow FG pada limbah batik oleh Eceng Gondok dengan Activator NaOH. Jakarta.
Gollakota, A. R. K., Volli, V., & Shu, C. M., 2019, Progressive utilisation prospects of coal fly ash: A review. In Science of the Total Environment (Vol. 672, pp. 951–989). Elsevier B.V.
Gupta SS., 2008, Immobilization of Pb(II), Cd(II), Ni(II) ions kaolinte and morillonite surfaces from aqueos medium. Journal of Environmental Management 87: 46-58.
Hanan SA., 2010, Aplication of zeolite prepared from Egyptian Kaolin for the removal of heavy metal : II. Isotherm models. Journal of Hazardous materials 182 : 842-847.
Hardiyanti A., 2011, Unsur-unsur yang dibebaskan dari proses pencucian abu terbang dari PLTU suralaya (Skripsi). Bogor. Fakultas pertanian, Institut Pertanian Bogor.
Hefni, Y., Zaher, Y. A. el, & Wahab, M. A., 2018, Influence of activation of fly ash on the mechanical properties of concrete. Construction and Building Materials, 172, 728–734.
Hollman, 1999, A two-step process for the synthesis of zeolities from coal fly ash. Fuel vol. 78 : 1225-1230.
Hui KS., 2005, Removal of mixed heavy metal ions in wastewater by zeolit 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials B 127 : 89-101.
Jha VK., 2009, Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolit X in multi-metal system. Journal of Enviromental Management 90 : 2507-2514.
Mazari Magazine, 2009, Abu terbang batubara sebagai adsorben. http://mazarimagazine.com/2009/06/. (10 Desember 2014).
Miyake M., 2008, Preparation of activated carbon zeolite composite materials froam coal fly ash. Micropore Mesopore Mater. 112 : 170-177.
Molina, A., 2004, A comparative study using two methods to produce zeolites from fly ash. Mineral Engineering. 17: 167-173.
Moore JW., 1991, Inorganic Contaminant of surface water. Springer-Verlag. New York. Hlm 334.
Musyoka NM., 2009, Removal of toxic elements from brine using zeolit Na-P1 made from A south African coal fly ash. Proceeding ISBN Number: 978-0-9802623-5-3. Pretoria South Africa.
Nath, S. K., & Kumar, S., 2019, Reaction kinetics of fly ash geopolymerization: Role of particle size controlled by using ball mill. Advanced Powder Technology, 30(5), 1079–1088.
Nikmah, Syukuri R.A, 2009, "Sintetis zeolit A dari abu dasar bebas sisa karbon dari PLTU PT. IPMOMI dengan metode hidrotermal langsung”, Kimia FMIPA ITS, Surabaya.
Oye G., 1999, Synthesis and characterization of siliceous and aluminium-containing mesoporus materials from different surfactant solution. Micropore Mesopore Matter. 27 : 171-180.
Ozacar, M., 2006, Contact time optimization of two-stage batch adsorber design using second-order kinetic model for the adsorption of phosphate onto alunite. Journal of Hazardous Materials. Vol 137 : 1197-1205.
Panayotova, M., 2001, Kinetics and thermodynamics of copper ion removal from wastewater by use of zeolite. Waste management. Vol. 21 : 671-676.
Park M., 2000, Molten-salt Method for the synthesis of zeolitic materials. I. Zeolite formation in alkaline molten-salt System. Micropore Mesopore Matter. 37: 81-89.
PPPTM, 1997, Pusat Penelitian dan Pengembangan Teknologi Mineral. Bandung.
Qiu W., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal 145 : 483-488.
Querol X., 2002, Synthesis of zeolites from fly ash. International Journal Coal Geol 50 : 413-423.
Sutarno., 2009, Sintesis, karakterisasi, dan aplikasi MCM-41. Di dalam : Aryanto Y, editor. Material canggih; rekayasa material berbasis sumber daya alam silika-alumina. Kelompok minat Kimia Material Universitas Gajah Mada. 2009. Hlm 83-116.
Thomas J.M., 1997, Principles and practice of heterogeneous catalysis. VCH Weiheim.
Valdes M. Granda. 2006. Zeolites and zeolit-based materials in analytical chemistry. Trends In Analytical Chemistry 25 (1): 24-30.
Vogel, 1985, Buku teks analisis anorganik kualitatif makro dan semimakro. Jakarta PT Kalman Media Pustaka.
Wang S., 2008, Adsorption Cu (II), Pb (II), and humic acid on natural zeolite tuff in single and binari system, Separation and Purification Technology 62 : 64-70
Yousuf, A., Manzoor, S. O., Youssouf, M., Malik, Z. A., & Sajjad Khawaja, K., 2020, Fly Ash: Production and Utilization in India-An Overview. In J. Mater. Environ. Sci (Vol. 2020, Issue 6).
Zhao Y., 2010, Preparation of Sintered foam materials by alkali-activated coal fly ash. Journal of Hazardous Materials 174 : 108-112.
Copyright (c) 2022 Jurnal Kimia Riset
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.