STUDY MOLECULES DOCKING OF ALKALOIDS IN KRATOM ON SEROTONIN TRANSPORTER (SERT), NOREPINEPHRINE TRANSPORTER (NET), AND MONOAMINE OXIDASE (MAO)
Downloads
Kratom (Mitragyna speciosa Korth) is a tropical plant originating from Southeast Asia that predominantly contains alkaloid compounds and can potentially maintain levels of monoamine compounds in the body to treat depression. The study aimed to examine the potential of 8 alkaloid compounds in kratom as antidepressants towards four target proteins: Serotonin Transporter (SERT), Dopamine Transporter (DOPAT), Leucine Transporter (LEUT), and Monoamine Oxidase (MAO) via molecular docking. The Pyrx program is used with exhaustiveness 106 as the protocol, and the grid is adapted to the active site of each receptor. The affinity values "‹"‹of the alkaloid compounds in kratom are mitragynine, 7-hydroxy mitragynine, speciociliatine, paynantheine, speciogynine, corynantheidine, mitraciliatine, and 9-hydroxycorynantheidine, for MAO were -7.1, -6.1, -5.7, -6.7, -5.7, -7.7, -5.7, and -5.7 kcal/ mole. All compounds bind to amino acid residues in the target protein through hydrogen and pi (Ï€) bonds. All the tested alkaloid compounds have the potential to be re-uptake inhibitors SERT, DOPAT, LEUT, and Monoamine Oxidase (MAO).
Ahmad, F., 2022. Protein stability determination problems. Frontiers in Molecular Biosciences, 9, 880358.
Andrade, C., & Rao, N., 2010. How antidepressant drugs act: A primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian J Psychiatry, 52(4), 378–386.
Anggraeni, V. J., Purwaniati, P., Budiana, W., & Nurdin, T., 2022. Molecular docking compounds in methanol extract of mango leaves (Mangifera indica l.) as anti-inflammatory agent. Jurnal Kimia Riset, 7(1), 57–65.
Arunpongpaisal, S., Assanagkornchai, S., Chongsuvivatwong, V., & Jampathong, N., 2022. Time-series analysis of trends in the incidence rates of successful and attempted suicides in Thailand in 2013–2019 and their predictors. BMC Psychiatry, 22(1), 579.
Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R., 2018. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.
Bogdanov, M., Mileykovskaya, E., & Dowhan, W., 2008. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. In P. J. Quinn & X.
Wang (Eds.), Lipids in Health and Disease (Vol. 49, pp. 197–239). Springer Netherlands.
Budiarto, D., Wijianto, B., & Ih, H., 2023. Study of Anthocyanin Molecule Blocking as Anti-Hypertensive through the Pathway of the Renin-Angiotensin-Aldosterone System (RAAS). Indo. J. Chem. Res., 11(1), 49–58.
De Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D. E., & Mattevi, A., 2005. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proceedings of the National Academy of Sciences, 102(36), 12684–12689.
Dougherty, P. G., Sahni, A., & Pei, D., 2019. Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews, 119(17), 10241–10287.
Dyas, R. A. A., Wijianto, B., & Ih, H., 2023. Docking studies for screening antibacterial compounds of Red Jeringau (Acorus calamus L.) using Shigella flexneri protein as a model system. Acta Chimica Asiana, 6(2), 343–350.
Feinstein, W. P., & Brylinski, M., 2015. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics, 7(1), 18.
Grinter, S. Z., & Zou, X., 2014. Challenges, Applications, and Recent Advances of Protein-Ligand Docking in Structure-Based Drug Design. Molecules, 19(7), 10150–10176.
Khan, M. T., Khan, A., Rehman, A. U., Wang, Y., Akhtar, K., Malik, S. I., & Wei, D.-Q., 2019. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Scientific Reports, 9(1), 7482.
Kruegel, A. C., Uprety, R., Grinnell, S. G., Langreck, C., Pekarskaya, E. A., Le Rouzic, V., Ansonoff, M., Gassaway, M. M., Pintar, J. E., Pasternak, G. W., Javitch, J. A., Majumdar, S., & Sames, D., 2019. 7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 5(6), 992–1001.
Lipinski, C. A., 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.
Matsumoto, K., Horie, S., Takayama, H., Ishikawa, H., Aimi, N., Ponglux, D., Murayama, T., & Watanabe, K., 2005. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sciences, 78(1), 2–7.
Meireles, V., Rosado, T., Barroso, M., Soares, S., Gonçalves, J., Luís, í‚., Caramelo, D., Simí£o, A., Fernández, N., Duarte, A., & Gallardo, E., 2019. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. Medicines, 6(1), 35.
Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M., 2011. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
Novindriani, D., Novindriana, D., Wijianto, B., & Andrie, M., 2021. Studies on the Sedative Effect of Mitragyna speciosa Korth. As an Endemic Plant in West Borneo, Indonesia. Letters in Applied NanoBioScience, 11(2), 3344–3349.
Penmatsa, A., Wang, K. H., & Gouaux, E., 2013. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature, 503(7474), 85–90.
Pidathala, S., Mallela, A. K., Joseph, D., & Penmatsa, A., 2021. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nature Communications, 12(1), 2199.
Pires, D. E. V., Blundell, T. L., & Ascher, D. B., 2015. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.
Prevete, E., Kuypers, K. P. C., Theunissen, E. L., Esposito, G., Ramaekers, J. G., Pasquini, M., & Corazza, O., 2023. Clinical Implications of Kratom (Mitragyna speciosa) Use: A Literature Review. Current Addiction Reports, 10(2), 317–334.
Sururi, A. M., M. Raihan, Elvira Ratna Aisa, Frisca Nadya Safitri, Irene Cornelia Constaty, & Tukiran., 2022. Anti-inflammatory activity of stem bark dichloromethane fraction Syzygium samarangense extract as COX-2 inhibitor: a bioinformatics approach. Jurnal Kimia Riset, 7(2), 94–100.
Tijjani, H., Olatunde, A., Adegunloye, A. P., & Ishola, A. A., 2022. Chapter 14”In silico insight into the interaction of 4-aminoquinolines with selected SARS-CoV-2 structural and nonstructural proteins. In C. Egbuna (Ed.), Coronavirus Drug Discovery (pp. 313–333). Elsevier.
Wijianto, B., . R., Purnomo, H., & Nurrochmad, A., 2019. In silico and in vitro assay of HGV analogue as antibacterial. International Journal of Pharmacy and Pharmaceutical Sciences, 78–85.
Wijianto, B., Ritmaleni, Purnomo, H., & Nurrochmad, A., 2020. Quantitative structure activity relationship (qsar) study and biological evaluation on mono-ketone analogs of curcumin as antioxidant. Research Journal of Pharmacy and Technology, 13(10).
Wijianto, B., Ritmaleni, R., Hari, P., & Arief, N., 2020. In silico and in vitro anti-inflammatory evaluation of 2,6-bis-(3'-ethoxy, 4'-hydroxybenzylidene)-cyclohexanone, 2,6-bis-(3'-Bromo,4'-methoxybenzylidene)-cyclohexanone, and 2,6-bis- (3',4'-dimethoxybenzylidene)-cyclohexanone. Journal of Applied Pharmaceutical Science, 10(6), 99–106.
Woo, J.-M., & Postolache, T. Τ., 2008. The impact of work environment on mood disorders and suicide: Evidence and implications. International Journal on Disability and Human Development, 7(2).
Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., & Gouaux, E., 2005. Crystal structure of a bacterial homologue of Na+/Cl”Dependent neurotransmitter transporters. Nature, 437(7056), 215–223.
Yang, N. J., & Hinner, M. J., 2015. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. In A. Gautier & M. J. Hinner (Eds.), Site-Specific Protein Labeling (Vol. 1266, pp. 29–53). Springer New York.
Copyright (c) 2023 Jurnal Kimia Riset
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.