OPTIMIZATION OF CURCUMIN ENCAPSULATION FORMULA WITH CHITOSAN AND ALGINATE USING SIMPLEX LATTICE DESIGN AND ITS EFFECT ON ANTIOXIDANT ACTIVITY
Downloads
Curcumin is known to enhance the performance of antioxidant serums, such as superoxide dismutase (SOD). However, curcumin is prone to degradation when exposed to sunlight, necessitating the use of encapsulation technology to protect it from chemical degradation and improve its dispersibility. Biopolymers like chitosan and alginate are commonly used as encapsulation materials. This study aimed to determine the ideal concentrations of chitosan and alginate for curcumin encapsulation and evaluate its antioxidant activity. The optimal formulation was identified using Design Expert software version 13 with a Simplex Lattice Design. Encapsulation was carried out through the ionic gelation method, and the curcumin encapsulates were evaluated for encapsulation efficiency, particle size, zeta potential, and antioxidant activity. The optimal formulation was found to be 1.35% chitosan and 2.145% alginate, achieving an encapsulation efficiency of 71.85%, a particle size of 551.1 nm, a zeta potential of -46 mV, and strong antioxidant activity with an IC50 value of 36.32 ppm. In conclusion, the Simplex Lattice Design method successfully optimized the formulation. Chitosan increased particle size, while alginate enhanced encapsulation efficiency. The antioxidant activity was minimally affected by encapsulation, as most curcumin was retained in the droplets. The zeta potential value confirmed the stability of the encapsulate.
Akbar, N.D., Nugroho, A.K. and Martono, S., 2022. Optimization of SNEDDS Formulation by Simplex Lattice Design and Box Behnken Design. Jurnal Ilmiah Farmako Bahari, 13(1), pp.90–100.
Akolade, J.O., Oloyede, H.O.B., Salawu, M.O., Amuzat, A.O., Ganiyu, A.I. and Onyenekwe, P.C., 2018. Influence of formulation parameters on encapsulation and release characteristics of curcumin loaded in chitosan-based drug delivery carriers. Journal of Drug Delivery Science and Technology, 45, pp.11–19.
Amin, M.K. and Boateng, J.S., 2022. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Marine Drugs, 20(3), pp.1–22.
Andriani, D. and Murtisiwi, L., 2020. Uji Aktivitas Antioksidan Ekstrak Etanol 70% Bunga Telang (Clitoria ternatea L) dari Daerah Sleman dengan Metode DPPH. Pharmacon: Jurnal Farmasi Indonesia, 17(1), pp.70–76.
Ang, L.F., Darwis, Y., Por, L.Y. and Yam, M.F., 2019. Microencapsulation Curcuminoids for E ff ective Delivery in Pharmaceutical Application. Pharmaceutics, 11.
Benamer Oudih, S., Tahtat, D., Nacer Khodja, A., Mahlous, M., Hammache, Y., Guittoum, A.E. and Kebbouche Gana, S., 2023. Chitosan nanoparticles with controlled size and zeta potential. Polymer Engineering and Science, 63(3), pp.1011–1021.
Dipahayu, D. and Kusumo, G.G., 2021. Formulasi dan Evaluasi Nano Partikel Ekstrak Etanol Daun Ubi Jalar Ungu (Ipomoea batatas L.) Varietas Antin-3. Jurnal Sains dan Kesehatan, 3(6), pp.781–785.
Dwitarani, N., Amin, R.R., Sofyah, T.M., Ramadhani, D.N. and Sutoyo, S., 2021. Sintesis dan Karakterisasi Nanoherbal Ekstrak Etanol Kayu Secang (Caesalpinia sappan L.). Jurnal Kimia Riset, 6(2), p.102.
Edityaningrum, C.A., Zulaechah, A.N., Putranti, W. and Arimurni, D.A., 2022. Formulation and Characterization of Carbamazepine Chitosan Nanoparticle. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 9(2), pp.146–154.
Fırtın, B., Yenipazar, H., Saygün, A. and Ahin-Yes¸ilçubuk, N.S., 2020. Encapsulation of chia seed oil with curcumin and investigation of release behaviour & antioxidant properties of microcapsules during in vitro digestion studies. Food Science and Technology, 134(January), pp.1–7.
Hewlings, S.J. and Kalman, D.S., 2017. Curcumin: A review of its effects on human health. Foods, 6(10), pp.1–11.
Hidayat, Angely, W., Ardiningsih, P. and Jayuska, A., 2018. Aktivitas Antioksidan dan Antibakteri Fraksi Etil Asetat Buah Asam Kandis (Garcinia dioica Blume) Terenkapsulasi Gelatin. Jurnal Kimia Khatulistiwa, 7(2), pp.33–40.
Hudiyanti, D., Al Khafiz, M.F., Anam, K., Siahaan, P. and Christa, S.M., 2022. In Vitro Evaluation of Curcumin Encapsulation in Gum Arabic Dispersions under Different Environments. Molecules, 27(12), pp.1–14.
J. Rohmah, 2020. Aktivitas Antioksidan Ekstrak Etanol, Etil Asetat, dan n-Heksana Batang Turi Putih (Sesbania grandiflora (L.) Pers.) dengan Metode DPPH (1,1-Diphenyl-2-picrylhydrazyl). Jurnal Kimia Riset, 5(1), pp.12–26.
Jafari, S.M., 2017. An overview of nanoencapsulation techniques and their classification, Elsevier Inc., Iran.
Jayanudin, J., Rochmadi, R., Renaldi, M.K. and Pangihutan, P., 2017. the Influence of Coating Material Difference Against Encapsulation Efficiency of Red Ginger Oleoresin. ALCHEMY Jurnal Penelitian Kimia, 13(2), p.274.
Kocaadam, B. and Şanlier, N., 2017. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), pp.2889–2895.
Kotha, R.R. and Luthria, D.L., 2019. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 24(16), pp.1–27.
Kumar, S.P., Birundha, K., Kaveri, K. and Devi, K.T.R., 2015. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. International Journal of Biological Macromolecules, 78, pp.87–95.
Lee, Y., Ji, Y.R., Lee, S., Choi, M.-J. and Cho, Y., 2019. Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions. J. Microbiol. Biotechnol, 29(5), pp.721–730.
Liu, X., Zhang, R., Shi, H., Li, X., Li, Y., Taha, A. and Xu, C., 2018. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts. Molecular Medicine Reports, 17(5), pp.7227–7237.
Machado, A.R., Silva, P.M.P., Vicente, A.A., Souza-Soares, L.A., Pinheiro, A.C. and Cerqueira, M.A., 2022. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers, 14(21).
Meng, R., Wu, Z., Xie, Q.T., Cheng, J.S. and Zhang, B., 2021. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Food Chemistry, 340(November 2019), p.127893.
Moon-ai, W., Niyomploy, P., Boonsombat, R., Sangvanich, P. and Karnchanata, A., 2012. A Superoxide Dismutase Purified from the Rhizome of Curcuma aeruginosa Roxb . as Inhibitor of Nitric Oxide Production in the Macrophage-like RAW 264 . 7 Cell Line. Appl Biochem Biotechnol, 166, pp.2138–2155.
Pires, J.B., Fonseca, L.M., Siebeneichler, T.J., Crizel, R.L., Santos, F.N. dos, Hackbart, H.C. dos S., Kringel, D.H., Meinhart, A.D., Zavareze, E. da R. and Dias, A.R.G., 2022. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: Thermal resistance and antioxidant activity. Food Research International, 162(October).
Prasetyo, Y.A., Rusdiana, T. and Abdassah, M., 2018. Preparation and Characterization of Glucosamine Nanoparticle by Ionic Gelation Method Using Chitosan and Alginate. Indonesian Journal of Pharmaceutics, 1(1), pp.1–10.
Purwanto, A., Amrina, F. and Riauwati, R., 2024. Optimasi Formula Krim Ekstrak Etanol Daun Patikan Kebo (Euphorbia Hirta L.) Dengan Metode Simplex Lattice Design. Jurnal Insan Farmasi Indonesia, 7(2), pp.520–532.
Scomoroscenco, C., Teodorescu, M., Burlacu, S.G., Gîfu, I.C., Mihaescu, C.I., Petcu, C., Raducan, A., Oancea, P. and Cinteza, L.O., 2022. Synergistic Antioxidant Activity and Enhanced Stability of Curcumin Encapsulated in Vegetal Oil-Based Microemulsion and Gel Microemulsions. Antioxidants, 11(5).
So¨kmen, M. and Khan, M.A., 2016. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmac, 24, pp.81–86.
Solghi, S., Emam-Djomeh, Z., Fathi, M. and Farahani, F., 2020. The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. Journal of Food Process Engineering, 43(6).
Yousefi, M., Khanniri, E., Shadnoush, M., Khorshidian, N. and Mortazavian, A.M., 2020. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. International Journal of Biological Macromolecules, 163, pp.44–54.
Zheng, B. and McClements, D.J., 2020. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability. Molecules, 25(12), pp.1–25.
Copyright (c) 2024 Jurnal Kimia Riset
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.