BIOACTIVE COMPOUNDS OF Moringa oleifera AS KRASG12C INHIBITORS IN COLORECTAL CANCER: IN SILICO STUDY
Downloads
KRAS is a GTPase enzyme that regulates cell growth and division. Mutations in KRAS can lead to its permanent activation, resulting in uncontrolled cell growth and cancer progression. Approximately 30–44% of colorectal cancer cases harbor KRAS mutations, with 1–3% involving the KRASG12C variant. Historically considered "undruggable," recent advancements, such as Sotorasib, have demonstrated the potential to target KRASG12C effectively, making it a promising focus for drug discovery. Moringa oleifera, a plant rich in phytochemicals, is a potential source of bioactive compounds with therapeutic applications. In this study, 218 compounds derived from M. oleifera were screened using molecular docking, targeting KRASG12C. Quercetin (3) exhibited the lowest binding affinity (-9.37 kcal/mol) and showed interactions with key residues, including GLN100A, VAL104A, LYS17A, and TYR97A, suggesting a binding mechanism similar to that of Sotorasib as native ligand. The physicochemical analysis further revealed high gastrointestinal absorption, good lipophilicity, and favorable bioavailability scores for Quercetin (3), supporting its potential as a drug candidate. These findings highlight the potential of M. oleifera compounds, particularly quercetin (3), as inhibitors of KRASG12C in colorectal cancer.
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., and Schroeder, M., 2021. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534.
Aja, P. M., Agu, P. C., Ezeh, E. M., Awoke, J. N., Ogwoni, H. A., Deusdedit, T., Ekpono, E. U., Igwenyi, I. O., Alum, E. U., and Ugwuja, E. I., 2021. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies. Bulletin of the National Research Centre, 45(1), 99.
Bell, E. W., and Zhang, Y., 2019. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11, 1–9.
Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C. G., Koppada, N., Lanman, B. A., Werner, J., Rapaport, A. S., San Miguel, T., Ortiz, R., Osgood, T., Sun, J.-R., Zhu, X., McCarter, J. D., Volak, L. P., Houk, B. E., Fakih, M. G., O'Neil, B. H., Price, T. J., Falchook, G. S., Desai, J., Kuo, J., Govindan, R., Hong, D. S., Ouyang, W., Henary, H., Arvedson, T., Cee, V. J., and Lipford, J. R., 2019., The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217–223.
Castro-González, L. M., Alvarez-Idaboy, J. R., and Galano, A., 2020. Computationally designed sesamol derivatives proposed as potent antioxidants. ACS Omega, 5(16), 9566–9575.
Cully, M., and Downward, J., 2008. SnapShot: Ras Signaling. Cell, 133(7), 1292-1292.e1.
Da Fonseca, A. M., Caluaco, B. J., Madureira, J. M. C., Cabongo, S. Q., Gaieta, E. M., Djata, F., Colares, R. P., Neto, M. M., Fernandes, C. F. C., Marinho, G. S., Dos Santos, H. S., and Marinho, E. S. 2024. Screening of Potential Inhibitors Targeting the Main Protease Structure of SARS-CoV-2 via Molecular Docking, and Approach with Molecular Dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA. Molecular Biotechnology, 66(8), 1919–1933.
Daina, A., Michielin, O., and Zoete, V., 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.
Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., and Liu, S.-Q., 2016. Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144.
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., and Bray, F., 2021. Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.
Ghose, A. K., Viswanadhan, V. N., and Wendoloski, J. J., 1999. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68.
Giannakis, M., Mu, X. J., Shukla, S. A., Qian, Z. R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., Sukawa, Y., Stewart, C., Rosenberg, M., Mima, K., Inamura, K., Nosho, K., Nowak, J. A., Lawrence, M. S., Giovannucci, E. L., Chan, A. T., Ng, K., Meyerhardt, J. A., Van Allen, E. M., Getz, G., Gabriel, S. B., Lander, E. S., Wu, C. J., Fuchs, C. S., Ogino, S., and Garraway, L. A., 2016. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports, 15(4), 857–865.
Hansen, R., Peters, U., Babbar, A., Chen, Y., Feng, J., Janes, M. R., Li, L.-S., Ren, P., Liu, Y., and Zarrinkar, P. P., 2018. The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nature Structural and Molecular Biology, 25(6), 454–462.
Hobbs, G. A., Wittinghofer, A., and Der, C. J., 2016. Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It’s Down. Cancer Cell, 29(3), 251–253.
Huang, L., Guo, Z., Wang, F., and Fu, L., 2021. KRAS mutation: From undruggable to druggable in cancer. Signal Transduction and Targeted Therapy, 6(1), 386.
Jänne, P. A., Riely, G. J., Gadgeel, S. M., Heist, R. S., Ou, S.-H. I., Pacheco, J. M., Johnson, M. L., Sabari, J. K., Leventakos, K., Yau, E., Bazhenova, L., Negrao, M. V., Pennell, N. A., Zhang, J., Anderes, K., Der-Torossian, H., Kheoh, T., Velastegui, K., Yan, X., Christensen, J. G., Chao, R. C., and Spira, A. I., 2022. Adagrasib in Non–Small-Cell Lung Cancer Harboring a KRASG12C Mutation. New England Journal of Medicine, 387(2), 120–131.
Kashyap, P., Kumar, S., Riar, C. S., Jindal, N., Baniwal, P., Guiné, R. P. F., Correia, P. M. R., Mehra, R., and Kumar, H., 2022. Recent advances in Drumstick (Moringa oleifera) leaves bioactive compounds: Composition, health benefits, bioaccessibility, and dietary applications. Antioxidants, 11(2), 402.
Koes, D. R., Baumgartner, M. P., and Camacho, C. J., 2013. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. Journal of Chemical Information and Modeling, 53(8), 1893–1904.
Kontoyianni, M., 2017. Docking and Virtual Screening in Drug Discovery. In I. M. Lazar, M. Kontoyianni, and A. C. Lazar (Eds.), Proteomics for Drug Discovery, 1647, 255–266.
Lin, M., Zhang, J., and Chen, X., 2018. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. Journal of Functional Foods, 47, 469–479.
Lipinski, C. A., 2001. Avoiding investment in doomed drugs. Curr Drug Discov, 1, 17–19.
Martin, Y. C., 2005. A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170.
Milburn, M. V., Tong, L., Devos, A. M., Brunger, A., Yamaizumi, Z., Nishimura, S., and Kim, S.-H., 1990. Molecular Switch for Signal Transduction, 247.
Mthiyane, F. T., Dludla, P. V., Ziqubu, K., Mthembu, S. X. H., Muvhulawa, N., Hlengwa, N., Nkambule, B. B., and Mazibuko-Mbeje, S. E., 2022. A Review on the Antidiabetic Properties of Moringa oleifera Extracts: Focusing on Oxidative Stress and Inflammation as Main Therapeutic Targets. Frontiers in Pharmacology, 13, 940572.
Mumtaz, M. Z., Kausar, F., Hassan, M., Javaid, S., and Malik, A., 2021. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 12.
Neumann, J., Zeindl-Eberhart, E., Kirchner, T., and Jung, A., 2009. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathology - Research and Practice, 205(12), 858–862.
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R., 2011. Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33.
Parikh, K., Banna, G., Liu, S. V., Friedlaender, A., Desai, A., Subbiah, V., and Addeo, A., 2022. Drugging KRAS: Current perspectives and state-of-art review. Journal of Hematology and Oncology, 15(1), 152.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E., 2004. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
Puranen, J. S., Vainio, M. J., and Johnson, M. S., 2010. Accurate conformation‐dependent molecular electrostatic potentials for high‐throughput in silico drug discovery. Journal of Computational Chemistry, 31(8), 1722–1732.
Roni, A., Maruf, A., and Marliani, L., 2021. Uji Sitotoksik Ekstrak Tanaman Gandaria (Bouea macrophylla Griff) terhadap Sel HeLa. Jurnal Kimia Riset, 6(1), 39.
Sahakitpichan, P., Mahidol, C., Disadee, W., Ruchirawat, S., and Kanchanapoom, T., 2011. Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry, 72(8), 791–795.
Schrodinger., 2015. The PyMOL Molecular Graphics System, Version 1.8.
Sharma, V., and Paliwal, R., 2014. Potential Chemoprevention of 7,12-Dimethylbenz[a]anthracene Induced Renal Carcinogenesis by Moringa oleifera Pods and Its Isolated Saponin. Indian Journal of Clinical Biochemistry, 29(2), 202–209.
Simanshu, D. K., Nissley, D. V., and McCormick, F., 2017. RAS Proteins and Their Regulators in Human Disease. Cell, 170(1), 17–33.
Sivani, B. M., Venkatesh, P., Murthy, T. P. K., and Kumar, S. B., 2021. In silico screening of antiviral compounds from Moringa oleifera for inhibition of SARS-CoV-2 main protease. Current Research in Green and Sustainable Chemistry, 4, 100202.
Teague, S. J., Davis, A. M., Leeson, P. D., and Oprea, T., 1999. The Design of Leadlike Combinatorial Libraries. Angewandte Chemie International Edition, 38(24), 3743–3748.
Teclegeorgish, Z. W., Aphane, Y. M., Mokgalaka, N. S., Steenkamp, P., and Tembu, V. J., 2021. Nutrients, secondary metabolites and anti-oxidant activity of Moringa oleifera leaves and Moringa-based commercial products. South African Journal of Botany, 142, 409–420.
Tukiran, Miranti, M. G., Dianawati, I., and Sabila, F. I., 2020. Aktivitas Antioksidan Ekstrak Daun Kelor (Moringa oleifera Lam.) dan Buah Bit (Beta vulgaris L.) sebagai Bahan Tambahan Minuman Suplemen. Jurnal Kimia Riset, 5(2), 113.
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., and Kopple, K. D., 2002. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
Waterman, C., Cheng, D. M., Rojas-Silva, P., Poulev, A., Dreifus, J., Lila, M. A., and Raskin, I., 2014. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry, 103, 114–122.
Xie, J., Peng, L., Yang, M., Jiang, W., Mao, J., Shi, C., Tian, Y., and Sheng, J., 2021. Alkaloid Extract of Moringa oleifera Lam. Exerts Antitumor Activity in Human Non-Small-Cell Lung Cancer via Modulation of the JAK2/STAT3 Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2021(1), 5591687.
Yaeger, R., Chatila, W. K., Lipsyc, M. D., Hechtman, J. F., Cercek, A., Sanchez-Vega, F., Jayakumaran, G., Middha, S., Zehir, A., Donoghue, M. T. A., You, D., Viale, A., Kemeny, N., Segal, N. H., Stadler, Z. K., Varghese, A. M., Kundra, R., Gao, J., Syed, A., Hyman, D. M., Vakiani, E., Rosen, N., Taylor, B. S., Ladanyi, M., Berger, M. F., Solit, D. B., Shia, J., Saltz, L., and Schultz, N., 2018. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell, 33(1), 125-136.e3.
Yang, Y., Wang, T., Chen, D., Ma, Q., Zheng, Y., Liao, S., Wang, Y., and Zhang, J., 2019. Quercetin preferentially induces apoptosis in KRAS‐mutant colorectal cancer cells via JNK signaling pathways. Cell Biology International, 43(2), 117–124.
Zhao, H., Yang, Y., Wang, S., Yang, X., Zhou, K., Xu, C., Zhang, X., Fan, J., Hou, D., and Li, X., 2023. NPASS database update 2023: Quantitative natural product activity and species source database for biomedical research. Nucleic Acids Research, 51(D1), D621–D628.
Copyright (c) 2024 Jurnal Kimia Riset
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.