Unraveling the Therapeutic Potential of Andrographis paniculata for Tuberculosis: Molecular Docking Study
Downloads
Tuberculosis (TB) remains a global health challenge with increasing drug resistance. This study aims to explore the potential of Andrographis paniculata as an alternative anti-TB therapy through an in silico approach. The study was conducted using the molecular docking method using Biovia Discovery Studio, AutoDock 1.5.7, and ChemDraw 3D software. The target proteins analyzed were 1TYP and 3R6C. which play a role in the biosynthesis of Mycobacterium tuberculosis cell walls. The docking results showed that dehydroandrographolide and neoandrographolide compounds have lower binding energies than ethambutol, with ΔG values of -9.54 kcal/mol and -9.04 kcal/mol at 3R6C, respectively. Stable hydrogen and non-hydrogen interactions indicate a stronger inhibitory potential against protein targets. Pharmacokinetic analysis through SwissADME and PKCMS confirmed that this compound meets Lipinski's Rule of 5 criteria, and has lower toxicity compared to conventional TB drugs. Thus, this study provides new insights into the development of natural compound-based TB therapy, which is potentially more effective and has minimal side effects. Further studies are needed to confirm the activity of this compound through in vitro and in vivo tests.
Abdurrahman, S., Ruslin, R., Hasanah, A., & Mustarichie, R. (2021). Molecular docking studies and ADME-Tox prediction of phytocompounds from Merremia peltata as a potential anti-alopecia treatment. Journal of Advanced Pharmaceutical Technology and Research, 12(2), 132–139. https://doi.org/10.4103/japtr.JAPTR_222_20
Alsayed, S. S. R., & Gunosewoyo, H. (2023). Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. In International Journal of Molecular Sciences (Vol. 24, Issue 6). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms24065202
Bindhu, M. R., Vijaya Rekha, P., Umamaheswari, T., & Umadevi, M. (2014). Antibacterial activities of Hibiscus cannabinus stem-assisted silver and gold nanoparticles. Materials Letters, 131, 194–197. https://doi.org/10.1016/j.matlet.2014.05.172
Castell, A., Short, F. L., Evans, G. L., Cookson, T. V. M., Bulloch, E. M. M., Joseph, D. D. A., Lee, C. E., Parker, E. J., Baker, E. N., & Lott, J. S. (2013). The substrate capture mechanism of mycobacterium tuberculosis anthranilate phosphoribosyltransferase provides a mode for inhibition. Biochemistry, 52(10), 1776–1787. https://doi.org/10.1021/bi301387m
Chiang, C. Y., Centis, R., & Migliori, G. B. (2010). Drug-resistant tuberculosis: Past, present, future. In Respirology (Vol. 15, Issue 3, pp. 413–432). https://doi.org/10.1111/j.1440-1843.2010.01738.x
Das, J., Paul Das, M., & Velusamy, P. (2013). Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 104, 265–270. https://doi.org/10.1016/j.saa.2012.11.075
Dyas, R. A. A., Wijianto, B., & IH, H. (2023). Docking studies for screening antibacterial compounds of Red Jeringau (Acorus calamus L.) using Shigella flexneri protein as a model system. Acta Chimica Asiana, 6(2), 343–350. https://doi.org/10.29303/aca.v6i2.161
Gautam, S., Qureshi, K. A., Jameel Pasha, S. B., Dhanasekaran, S., Aspatwar, A., Parkkila, S., Alanazi, S., Atiya, A., Khan, M. M. U., & Venugopal, D. (2023). Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. In Antibiotics (Vol. 12, Issue 3). MDPI. https://doi.org/10.3390/antibiotics12030541
Grangeasse, C., Terreux, R., & Nessler, S. (2010). Bacterial tyrosine-kinases: Structure-function analysis and therapeutic potential. In Biochimica et Biophysica Acta - Proteins and Proteomics (Vol. 1804, Issue 3, pp. 628–634). https://doi.org/10.1016/j.bbapap.2009.08.018
Hamada, Y., Getahun, H., Tadesse, B. T., & Ford, N. (2021). HIV-associated tuberculosis. In International Journal of STD and AIDS (Vol. 32, Issue 9, pp. 780–790). SAGE Publications Ltd. https://doi.org/10.1177/0956462421992257
Haridas, N., Sreekumar, S., & Biju, C. K. (2017). IN SILICO VALIDATION OF ANTI-TUBERCULOSIS ACTIVITY IN ANDROGRAPHIS PANICULATA (BURM.F.) NEES. International Journal of Pharmaceutical Sciences and Drug Research, 201–209. https://doi.org/10.25004/ijpsdr.2017.090408
Koul, A., Dendouga, N., Vergauwen, K., Molenberghs, B., Vranckx, L., Willebrords, R., Ristic, Z., Lill, H., Dorange, I., Guillemont, J., Bald, D., & Andries, K. (2007). Diarylquinolines target subunit c of mycobacterial ATP synthase. Nature Chemical Biology, 3(6), 323–324. https://doi.org/10.1038/nchembio884
Kwan, C., & Ernst, J. D. (2011). HIV and tuberculosis: A deadly human syndemic. In Clinical Microbiology Reviews (Vol. 24, Issue 2, pp. 351–376). https://doi.org/10.1128/CMR.00042-10
Lestariningrum, W. T., Kintoko, K., & Farid, M. (2024). Integrated Ethnomedicine Study in Silico of Medicinal Plants for Hypertension. Journal La Lifesci, 5(5), 483–501. https://doi.org/10.37899/journallalifesci.v5i5.1656
Locher, C. P., Jones, S. M., Hanzelka, B. L., Perola, E., Shoen, C. M., Cynamon, M. H., Ngwane, A. H., Wiid, I. J., Van Helden, P. D., Betoudji, F., Nuermberger, E. L., & Thomson, J. A. (2015). A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrobial Agents and Chemotherapy, 59(3), 1455–1465. https://doi.org/10.1128/AAC.04347-14
Ma, J., Yang, Y., Fu, Y., Guo, F., Zhang, X., Xiao, S., Zhu, W., Huang, Z., Zhang, J., & Chen, J. (2018). PIAS3-mediated feedback loops promote chronic colitis-associated malignant transformation. Theranostics, 8(11), 3022–3037. https://doi.org/10.7150/thno.23046
Manjunatha, U. H., & Smith, P. W. (2015). Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. Bioorganic and Medicinal Chemistry, 23(16), 5087–5097. https://doi.org/10.1016/j.bmc.2014.12.031
Mase, S. R., & Chorba, T. (n.d.). Treatment of Drug-Resistant Tuberculosis. https://doi.org/10.1016/j.ccm.2019.08
Mdluli, K., Kaneko, T., & Upton, A. (2015). The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harbor Perspectives in Biology, 7(5), 1–25. https://doi.org/10.1101/cshperspect.a021154
Migliori, G. B., Tiberi, S., Zumla, A., Petersen, E., Chakaya, J. M., Wejse, C., Torrico, M. M., Duarte, R., Alffenaar, J. W., Schaaf, H. S., Marais, B. J., Cirillo, D. M., Alagna, R., Rendon, A., Pontali, E., Piubello, A., Figueroa, J., Ferlazzo, G., García-Basteiro, A., … Zellweger, J. P. (2020). MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. International Journal of Infectious Diseases, 92, S15–S25. https://doi.org/10.1016/j.ijid.2020.01.042
Okhuarobo, A., Ehizogie Falodun, J., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Disease, 4(3), 213–222. https://doi.org/10.1016/S2222-1808(14)60509-0
Prabu, A., Hassan, S., Prabuseenivasan, Shainaba, A. S., Hanna, L. E., & Kumar, V. (2015). Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2′-N-acetyltransferase in Mycobacterium tuberculosis. Journal of Molecular Graphics and Modelling, 61, 133–140. https://doi.org/10.1016/j.jmgm.2015.07.001
Ramadhan, M. M., Utami, D., & Yuliani, S. (2024). In Silico Study of Purple Yam Anthocyanin Compounds (Dioscorea alata L.) As MAO-B and COMT Inhibitors in Parkinson’s Disease. In Journal of Pharmaceutical Science (Vol. 20, Issue 1). http://journal.uad.ac.id/index.php/Media-Farmasi/indexmediafarmasi@pharm.uad.ac.id
Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5). https://doi.org/10.3390/molecules23051038
Singh, A., Maqsood Ahamad Khan, M., Sahu, D., Vishwakarma, N., Yadav, A., Nath Singh, A., & Anurag Singh, C. (2017). Pharmacological and Anti-bacterial Activities of the leaves of Andrographis paniculata Nees. Journal of Pharmacognosy and Phytochemistry, 6(3), 418–420.
Sotgiu, G., Centis, R., D’Ambrosio, L., & Battista Migliori, G. (2015). Tuberculosis treatment and drug regimens. Cold Spring Harbor Perspectives in Medicine, 5(5). https://doi.org/10.1101/cshperspect.a017822
Syahputra, R., Utami, D., & Widyaningsih, W. (2022). STUDI DOCKING MOLEKULER AKTIVITAS PENGHAMBATAN ENZIM TIROSINASE UBI JALAR (Ipomoea batatas L. Lam). Pharmacon: JurnalFarmasi Indonesia, 19(1). http://pubchem.ncbi.n
Tobin, E. H., & Tristram, D. (2024). Tuberculosis Overview. In StatPearls.
Venugopala, K. N., Chandrashekharappa, S., Deb, P. K., Tratrat, C., Pillay, M., Chopra, D., Al-Shar’i, N. A., Hourani, W., Dahabiyeh, L. A., Borah, P., Nagdeve, R. D., Nayak, S. K., Padmashali, B., Morsy, M. A., Aldhubiab, B. E., Attimarad, M., Nair, A. B., Sreeharsha, N., Haroun, M., … Mailavaram, R. (2021). Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1472–1487. https://doi.org/10.1080/14756366.2021.1919889
Warner, D. F., Koch, A., & Mizrahi, V. (2015). Diversity and disease pathogenesis in mycobacterium tuberculosis. In Trends in Microbiology (Vol. 23, Issue 1, pp. 14–21). Elsevier Ltd. https://doi.org/10.1016/j.tim.2014.10.005
WHO. (2023). Global Tuberculosis Report 2023. World Health Organization.
Williams, P. M., Pratt, R. H., Walker, W. L., Price, S. F., Stewart, R. J., & Feng, P.-J. I. (2023). Morbidity and Mortality Weekly Report Tuberculosis-United States, 2023. In Centers for Disease Control and Prevention | MMWR (Vol. 73, Issue 12). https://ndc.services.cdc.gov/case-definitions/tuberculosis-2009
Xu, Z., Meshcheryakov, V. A., Poce, G., & Chng, S. S. (2017). MmpL3 is the flippase for mycolic acids in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7993–7998. https://doi.org/10.1073/pnas.1700062114
Zumla, A., Chakaya, J., Centis, R., D’Ambrosio, L., Mwaba, P., Bates, M., Kapata, N., Nyirenda, T., Chanda, D., Mfinanga, S., Hoelscher, M., Maeurer, M., & Migliori, G. B. (2015). Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. In The Lancet Respiratory Medicine (Vol. 3, Issue 3, pp. 220–234). Lancet Publishing Group. https://doi.org/10.1016/S2213-2600(15)00063-6
Copyright (c) 2025 Jurnal Kimia Riset

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.