Tannin-Based Natural Dye for DSSC: Polymerization Strategies to Maximize Efficiency
Downloads
Dye-sensitised solar cells (DSSCs) use dyes to absorb sunlight. Tannin is an eco-friendly natural dye alternative. However, the efficiency of tannin-based DSSCs is still low due to the limited number of conjugated double bonds. This study aims to improve the efficiency of DSSCs by polymerising tannin in two steps: Formaldehyde condensation under acidic conditions and glutaraldehyde crosslinking in alkaline medium. Parameter variations included initiator concentration (KOH vs. NaOH), crosslinking agent volume, polymerization time and temperature, and tannin monomer concentration. Characterization by FTIR and UV-Vis showed an increase in light absorption after polymerisation. The best results were obtained at 120°C, 2% NaOH initiator, 2.5 mL glutaraldehyde volume and 90 min reaction time, with DSSC efficiency reaching 9.18%, a fourfold increase compared to pure tannin (2.18%). This study shows that tannin polymerization significantly improves the efficiency of DSSCs, so it has the potential to be developed as a more efficient natural dye for photovoltaic applications.
Achakulwisut, P., Erickson, P., Guivarch, C., Schaeffer, R., Brutschin, E., & Pye, S. (2023). Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nature Communications, 14(1), 5425. https://doi.org/10.1038/s41467-023-41105-z
Ammar, A. M., Mohamed, H. S. H., Yousef, M. M. K., Abdel-Hafez, G. M., Hassanien, A. S., & Khalil, A. S. G. (2019). Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials, 2019, 1–10. https://doi.org/10.1155/2019/1867271
Badawy, S. A., Abdel-Latif, E., & Elmorsy, M. R. (2024). Tandem dye-sensitized solar cells achieve 12.89% efficiency using novel organic sensitizers. Scientific Reports, 14(1), 26072. https://doi.org/10.1038/s41598-024-75959-0
Barichello, J., Mariani, P., Vesce, L., Spadaro, D., Citro, I., Matteocci, F., Bartolotta, A., Di Carlo, A., & Calogero, G. (2024). Bifacial dye-sensitized solar cells for indoor and outdoor renewable energy-based application. Journal of Materials Chemistry C, 12(7), 2317–2349. https://doi.org/10.1039/D3TC03220E
Bekele, E. T., & Sintayehu, Y. D. (2022). Recent Progress, Advancements, and Efficiency Improvement Techniques of Natural Plant Pigment‐Based Photosensitizers for Dye‐Sensitized Solar Cells. Journal of Nanomaterials, 2022(1). https://doi.org/10.1155/2022/1024100
Chien, F., Huang, L., & Zhao, W. (2023). The influence of sustainable energy demands on energy efficiency: Evidence from China. Journal of Innovation & Knowledge, 8(1), 100298. https://doi.org/10.1016/j.jik.2022.100298
Coppola, C., Parisi, M. L., & Sinicropi, A. (2023). The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells. Energies, 16(2), 573. https://doi.org/10.3390/en16020573
da Conceição, L. R. B., da Cunha, H. O., Leite, A. M. B., Suresh Babu, R., Raja, S., Ribeiro, C., & de Barros, A. L. F. (2023a). Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers. Colorants, 2(4), 618–631. https://doi.org/10.3390/colorants2040032
da Conceição, L. R. B., da Cunha, H. O., Leite, A. M. B., Suresh Babu, R., Raja, S., Ribeiro, C., & de Barros, A. L. F. (2023b). Evaluation of Solar Conversion Efficiency in Dye-sensitized Solar Cells Using Natural Dyes Extracted from Alpinia purpurata and Alstroemeria Flower Petals as Novel Photosensitizers. Colorants, 2(4), 618–631. https://doi.org/10.3390/colorants2040032
D’Amico, F., de Jong, B., Bartolini, M., Franchi, D., Dessì, A., Zani, L., Yzeiri, X., Gatto, E., Santucci, A., Di Carlo, A., Reginato, G., Cinà, L., & Vesce, L. (2023). Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions. Materials, 16(23), 7338. https://doi.org/10.3390/ma16237338
Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58–70. https://doi.org/10.1016/J.SAJB.2020.08.008
Dhorkule, M., Lamrood, P., Ralegankar, S., Patole, S. P., Wagh, S. S., & Pathan, H. M. (2024). Unveiling the Efficiency of Dye-Sensitized Solar Cells: A Journey from Synthetic to Natural Dyes. ES Food & Agroforestry. https://doi.org/10.30919/esfaf1086
Dorahaki, S., Rashidinejad, M., Abdollahi, A., & Mollahassani-pour, M. (2018). A novel two-stage structure for coordination of energy efficiency and demand response in the smart grid environment. International Journal of Electrical Power & Energy Systems, 97, 353–362. https://doi.org/10.1016/j.ijepes.2017.11.026
Dragonetti, C., & Colombo, A. (2021). Recent Advances in Dye-Sensitized Solar Cells. Molecules, 26(9), 2461. https://doi.org/10.3390/molecules26092461
Elalfy, D. A., Gouda, E., Kotb, M. F., Bureš, V., & Sedhom, B. E. (2024). Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends. Energy Strategy Reviews, 54, 101482. https://doi.org/10.1016/j.esr.2024.101482
Fagnani, F., Colombo, A., Dragonetti, C., & Roberto, D. (2023a). Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules, 29(1), 6. https://doi.org/10.3390/molecules29010006
Fagnani, F., Colombo, A., Dragonetti, C., & Roberto, D. (2023b). Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules, 29(1), 6. https://doi.org/10.3390/molecules29010006
Fetouh, H. A., Dissouky, A. E., Salem, H. A., Fathy, M., Anis, B., & Hady Kashyout, A. E. (2024). Synthesis, characterization and evaluation of new alternative ruthenium complex for dye sensitized solar cells. Scientific Reports, 14(1), 16718. https://doi.org/10.1038/s41598-024-66808-1
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., … Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data, 15(12), 5301–5369. https://doi.org/10.5194/essd-15-5301-2023
Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234–246. https://doi.org/10.1016/j.rser.2016.09.097
Gul, M., Kotak, Y., & Muneer, T. (2016). Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 34(4), 485–526. https://doi.org/10.1177/0144598716650552
Hamed, N. K. A., Ahmad, M. K., Urus, N. S. T., Mohamad, F., Nafarizal, N., Ahmad, N., Soon, C. F., Ameruddin, A. S., Faridah, A. B., Shimomura, M., & Murakami, K. (2017). Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia. 020029. https://doi.org/10.1063/1.5002047
Hossain, E., Faruque, H., Sunny, Md., Mohammad, N., & Nawar, N. (2020). A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies, 13(14), 3651. https://doi.org/10.3390/en13143651
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894–900. https://doi.org/10.1016/j.rser.2017.09.094
Khan, M., Iqbal, M. A., Malik, M., Hashmi, S. U. M., Bakhsh, S., Sohail, M., Qamar, M. T., Al-Bahrani, M., Capangpangan, R. Y., Alguno, A. C., & Choi, J. R. (2023). Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites. Scientific Reports, 13(1), 3123. https://doi.org/10.1038/s41598-023-30000-8
Koopmann, A.-K., Schuster, C., Torres-Rodríguez, J., Kain, S., Pertl-Obermeyer, H., Petutschnigg, A., & Hüsing, N. (2020). Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules, 25(21), 4910. https://doi.org/10.3390/molecules25214910
Mahajan, U., Prajapat, K., Dhonde, M., Sahu, K., & Shirage, P. M. (2024). Natural dyes for dye-sensitized solar cells (DSSCs): An overview of extraction, characterization and performance. Nano-Structures & Nano-Objects, 37, 101111. https://doi.org/10.1016/j.nanoso.2024.101111
Malhotra, S. S., Ahmed, M., Gupta, M. K., & Ansari, A. (2024). Metal-free and natural dye-sensitized solar cells: recent advancements and future perspectives. Sustainable Energy & Fuels, 8(18), 4127–4163. https://doi.org/10.1039/D4SE00406J
Malinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy efficiency in industry: EU and national policies in Italy and the UK. Energy, 172, 255–269. https://doi.org/10.1016/j.energy.2019.01.130
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F. E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, Md. K., & Grätzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242–247. https://doi.org/10.1038/nchem.1861
Michaels, H., Rinderle, M., Freitag, R., Benesperi, I., Edvinsson, T., Socher, R., Gagliardi, A., & Freitag, M. (2020a). Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science, 11(11), 2895–2906. https://doi.org/10.1039/C9SC06145B
Michaels, H., Rinderle, M., Freitag, R., Benesperi, I., Edvinsson, T., Socher, R., Gagliardi, A., & Freitag, M. (2020b). Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science, 11(11), 2895–2906. https://doi.org/10.1039/C9SC06145B
Millward-Hopkins, J., Steinberger, J. K., Rao, N. D., & Oswald, Y. (2020). Providing decent living with minimum energy: A global scenario. Global Environmental Change, 65, 102168. https://doi.org/10.1016/j.gloenvcha.2020.102168
Müller, J. D., Gruber, N., Carter, B., Feely, R., Ishii, M., Lange, N., Lauvset, S. K., Murata, A., Olsen, A., Pérez, F. F., Sabine, C., Tanhua, T., Wanninkhof, R., & Zhu, D. (2023). Decadal Trends in the Oceanic Storage of Anthropogenic Carbon From 1994 to 2014. AGU Advances, 4(4). https://doi.org/10.1029/2023AV000875
Narvaez, G., Giraldo, L. F., Bressan, M., & Pantoja, A. (2021). Machine learning for site-adaptation and solar radiation forecasting. Renewable Energy, 167, 333–342. https://doi.org/10.1016/j.renene.2020.11.089
Nijsse, F. J. M. M., Mercure, J.-F., Ameli, N., Larosa, F., Kothari, S., Rickman, J., Vercoulen, P., & Pollitt, H. (2023). The momentum of the solar energy transition. Nature Communications, 14(1), 6542. https://doi.org/10.1038/s41467-023-41971-7
Nurosyid, F., Riyadi, U., Widiyandari, H., Iriani, Y., Khairuddin Khairuddin, & Suryana, R. (2024). Optoelectronic Properties of Combinations of Anthocyanin, Betalain, and Chlorophyll doped with Ag Metal as the Photosensitizers in Dye-Sensitized Solar Cell. Evergreen, 11(3), 2135–2141. https://doi.org/10.5109/7236857
Onah, E. H., Lethole, N. L., & Mukumba, P. (2024). Luminescent Materials for Dye-Sensitized Solar Cells: Advances and Directions. Applied Sciences, 14(20), 9202. https://doi.org/10.3390/app14209202
Piao, X., & Managi, S. (2023). Household energy-saving behavior, its consumption, and life satisfaction in 37 countries. Scientific Reports, 13(1), 1382. https://doi.org/10.1038/s41598-023-28368-8
Plebankiewicz, I., Bogdanowicz, K. A., Kwaśnicki, P., Przybył, W., Skunik-Nuckowska, M., Kulesza, P. J., & Iwan, A. (2024). Inorganic–organic modular silicon and dye-sensitized solar cells and predicted role of artificial intelligence towards efficient and stable solar chargers based on supercapacitors. Scientific Reports, 14(1), 6115. https://doi.org/10.1038/s41598-024-56302-z
Rahman, S., Haleem, A., Siddiq, M., Hussain, M. K., Qamar, S., Hameed, S., & Waris, M. (2023). Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Advances, 13(28), 19508–19529. https://doi.org/10.1039/D3RA00903C
Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705–718. https://doi.org/10.1016/j.rser.2016.11.198
Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275–291. https://doi.org/10.1016/j.rser.2018.03.065
Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13(1), 381. https://doi.org/10.1186/s11671-018-2760-6
Suyitno, S., Muqoffa, M., Marlina, A., Adriyanto, F., & Basuki, B. (2024). Unlocking the potential of anthocyanin-based dye-sensitized solar cells: Strategies for enhancing efficiency, stability, and economic viability. Journal of Applied Research and Technology, 22(2), 308–326. https://doi.org/10.22201/icat.24486736e.2024.22.2.2298
Swanson, B. G. (2003). TANNINS AND POLYPHENOLS. Encyclopedia of Food Sciences and Nutrition, 5729–5733. https://doi.org/10.1016/B0-12-227055-X/01178-0
Talwekar, R. H., & Tiwari, A. (2022). Optical property analysis of transition and alkaline metal doped MoS2 bulk layers for photo-sensor applications. Materials Today: Proceedings, 59, 692–698. https://doi.org/10.1016/j.matpr.2021.12.222
Triyanto, A., Ali, N., Salleh, H., Setiawan, J., & Yatim, N. I. (2024). Development of natural dye photosensitizers for dye-sensitized solar cells: a review. Environmental Science and Pollution Research, 31(22), 31679–31690. https://doi.org/10.1007/s11356-024-33360-4
Upneja, A., Kaur, K., & Gupta, N. (2024). Green synthesis of TiO2 nanoparticles for enhanced photovoltaic properties in dye-sensitized solar cells: a mini-review. Journal of Coordination Chemistry, 77(22–24), 2527–2543. https://doi.org/10.1080/00958972.2024.2445212
Vera, M., & Urbano, B. F. (2021). Tannin polymerization: an overview. Polymer Chemistry, 12(30), 4272–4290. https://doi.org/10.1039/D1PY00542A
Weir, B., Ott, L. E., Collatz, G. J., Kawa, S. R., Poulter, B., Chatterjee, A., Oda, T., & Pawson, S. (2021). Bias-correcting carbon fluxes derived from land-surface satellite data for retrospective and near-real-time assimilation systems. Atmospheric Chemistry and Physics, 21(12), 9609–9628. https://doi.org/10.5194/acp-21-9609-2021
Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., & Luo, G. (2015). Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 115(5), 2136–2173. https://doi.org/10.1021/cr400675m
Yang, S., Fu, W., Zhang, Z., Chen, H., & Li, C.-Z. (2017). Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 5(23), 11462–11482. https://doi.org/10.1039/C7TA00366H
Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., & Lin, Z. (2015). Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 18(3), 155–162. https://doi.org/10.1016/j.mattod.2014.09.001
Zafar Iqbal. (2017). Eco-friendly natural dyes as sensitizers for dye-sensitized solar cells (DSSCs). International Journal of Biosciences (IJB), 11(6), 151–158. https://doi.org/10.12692/ijb/11.6.151-158
Copyright (c) 2025 Jurnal Kimia Riset

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
1. By submitting the article to Jurnal Kimia Riset (JKR), the author has agreed to transfer some of the copyrights to the publisher of the research chemistry journal, Universitas Airlangga, indicated in the Copyright Transfer Agreement.
2. Authors still retain significant rights to use and share their own published articles for non-commercial purposes subject to Creative Commons Attribution-NonComercial 4.0 International License
3. All publications (printed/electronic) are open access for educational purposes, research, library, and other non-commercial purposes. Besides the purposes mentioned above, the editorial board is not responsible for copyright violations.