Characterization of Chitosan Edible Film by Addition of Salt Solution as an Antibacterial
Downloads
Edible film is a type of bioplastic in the form of a thin layer that can be consumed along with food products. It functions as a barrier to O₂ and CO₂ and helps control dissolved substances by reducing moisture, respiration, and oxidation rates without altering food components. To enhance its functionality, edible film can be fortified with active substances such as natural antimicrobials—one of which is salt, known for its ability to inhibit bacterial growth. This research is important in the development of bioplastics as it offers an environmentally friendly solution for food packaging, reducing reliance on conventional plastics and chemical preservatives. The study aims to analyze the effect of adding salt solution (0%, 2%, 4%, and 6%) on the microbiological and physical characteristics of chitosan-based edible film. Physical data were analyzed using a one-factor Completely Randomized Design (CRD), followed by ANOVA and Duncan’s Multiple Range (DMRT) tests. The results showed that chitosan edible film could inhibit Staphylococcus aureus with an inhibition zone diameter of 4.88 mm, categorized as weak antibacterial activity. The physical characteristics of the film showed significant variations, with thickness ranging from 0.062–0.074 mm, tensile strength from 1.127–1.822 MPa, and elongation from 115.7–120.3%. Overall, chitosan edible film with added salt solution met the Japanese International Standard JIS Z-1707, indicating its potential as a safer and more environmentally friendly food packaging material.
Keywords: Antibacterial, edible film, salt, chitosan, quality
Daftar Pustaka
Amalia, A., Dwiyanti, R. D. & Haitami, H. (2016). Daya hambat NaCl terhadap pertumbuhan Staphylococcus aureus. Medical Laboratory Technology Journal, 2(2):42-45.
Apriliana, E., Ramadhian, M. R. & Efrida, W. (2018). Perbandingan daya hambat ekstrak daun jarak pagar (Jatropha curcas Linn) terhadap pertumbuhan bakteri Staphylococcus aureus dan Escherichia coli secara in vitro. Agromedicine Unila, 5(2):556-561.
ASTM. (2000). Standard test methods for tensile properties of plastics, D-638-02. Philadelphia: American Society for Testing and Material.
Bedel, N. S., Tezcan, M., Ceylan, O., Gurdag, G. & Cicek, H. (2015). Effects of pore morphology and size on antimicrobial activity of chitosan/poly (ethylene glycol) diacrylate macromer semi‐IPN hydrogels. Journal of Applied Polymer Science, 132(43):1-14.
Borghei, M., Karbassi, A., Oromiehie, A. & Javid, A. H. (2010). Microbial biodegradable potato starch based low density polyethylene. African Journal of Biotechnology, 9(26):4075-4080.
Chandra, D., Molla, M. T. H., Bashar, M. A., Islam, M. S., & Ahsan, M. S. (2023). Chitosan-based nano-sorbents: synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Scientific Reports, 13(6050).
Choi, S. S. & Regenstein, J. M. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(1):194-199.
Conte, A., Angiolillo, L., Mastromatteo, M. & Del Nobile, A. (2013). Technological options of packaging to control food quality. Food Industry, 16(1):354-379.
Dakal, T. C., Kumar, A., Majumdar, R. S. & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7(1):8-31.
Das, D. K., Dutta, H. & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT – Food Science and Technology, 50(1):272–278.
Gerung, W. H. P., Fatimawali, & Antasionasti, I. (2021). Uji aktivitas antibakteri ekstrak daun belimbing botol (Averrhoa bilimbi L.) terhadap pertumbuhan bakteri Propionibacterium acne penyebab jerawat. Jurnal Pharmacon, 10(4):1087-1093.
Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26(1):122-127.
Indarti, N. (2009). Pertumbuhan Staphylococcus aureus pada media yang ditambah garam dapur. Jurnal Saintek, 12(2):1-9.
Jacoeb, A. M., Nugraha, R. & Utari, S. P. S. D. (2014). Pembuatan edible film dari pati buah lindur dengan penambahan gliserol dan karaginan. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1):14-21.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R. & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223):768-771.
JIS (Japanese Industrial Standard). (2008). JIS Z-1707:1997. General rules of plastic films for food packaging. Japanese Standards Association.
Kang, H. J., Kim, S. J., You, Y. S., Lacroix, M. & Han, J. (2013). Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation. LWT-Food Science and Technology, 51(1):393-396.
Kerch, G. (2015). Chitosan-based packaging materials for food preservation. Journal of Food Science and Technology, 52(4):1957-1964.
Kumar, G. D., Ravishankar, S. & Juneja, V. K. (2017). Interventions for fresh produce. In V. K. Juneja, H. P. Dwivedi, J. N. Sovos, Microbial control and food preservation: Theory and practice. (pp. 199-223). Springer.
Kusriningrum, R. S. (2008). Perancangan percobaan. Surabaya: Universitas Airlangga.
Lazo, L., Melo, G. M., Auad, M. L., Filippa, M. & Masuelli, M. A. (2022). Synthesis and characterization of chanar gum films. Colloids and Interfaces, 6(1):10-24.
Lingga, A. R., Pato, U. & Rossi, E. (2015). Uji antibakteri ekstrak batang kecombrang (Nicolaia speciose) terhadap Staphylococcus aureus dan Escherichia coli. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 2(2):1-15.
Luo, Y., Lu, S., Zhou, B. & Feng, H. (2011). Dual effectiveness of sodium chloride for enzymatic browning inhibition and microbial inactivation on fresh-cut apples. LWT - Food Science and Technology, 44(1):1621-1625.
Milani, J. M. & Nemati, A. (2022). Lipid-based edible films and coatings: A review of recent advances and applications. Journal of Packaging Technology and Research, 6(1):11-22.
Nur, A. D. (2019). Uji daya hambat ekstrak daun jambu mente (Anacardium occidentale L.) terhadap pertumbuhan bakteri Staphylococcus aureus. Thesis. Jombang: Institut Teknologi Sains dan Kesehatan.
Nugraha, B. A. & Rini, C. S. (2024). Efektivitas garam dapur dan garam hitam Himalaya terhadap bakteri Streptococcus mutans dan Klebsiella peneumoniae sebagai antibakteri secara in-vitro. Skripsi. Sidoarjo: Universitas Muhammadiyah Sidoarjo.
Pamilia, C., Laila, L., & Alfira, M. R. (2015). Pembuatan film plastik biodegredabel dari pati jagung dengan penambahan kitosan dan pemplastis gliserol. Jurnal Teknik Kimia, 4(20).
Pelczar, M. & Chan, E. C. S. (1988). Dasar-dasar mikrobiologi. Jakarta: Penerbit UI-Press.
Pereda, M., Amica, G. & Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(1):1318-1325.
Ramadhani, P. D., Supriyadi, S., Hendrasty, H. K., Laksana, E. M. B., & Santoso, U. (2023). Karakteristik edible film aktif berbasis kitosan dengan penambahan ekstrak daun jati. Jurnal Teknologi dan Industri Pangan, 34(1):1-12.
Rambabu, K., Bharath, G., Banat, F., Show, P. L. & Cocoletzi, H. H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126(1):1234-1243.
Ray, B. & Bhunia, A. (2014). Fundamental food microbiology. Fifth Ed. U.S: CRC Press.Taylor & Francis Group.
Riski, R. & Sami, F. J. (2015). Formulasi krim anti jerawat dari nanopartikel kitosan cangkang udang windu (Penaeus monodon). Jurnal Farmasi UIN Alauddin Makassar, 3(4):153-162.
Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E. & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 9(1):15-29.
Saputra, E., Kismiyati, Pramono, H., Abdillah, A. A., & Alamsjah, M. A. (2015). An edible film characteristic of chitosan made from shrimp waste as a plasticizer. Journal of Natural Sciences Research, 5(4):1-9.
Sarwono, R. (2010). Pemanfaatan kitin kitosan sebagai bahan anti mikroba. Indonesian Journal of Applied Chemistry, 12(1):1-14.
Shi, B., Hao, Z., Du, Y., Jia, M. & Xie, S. (2024). Mechanical and barrier properties of chitosan-based composite film as food packaging: A review. BioResources, 19(2):4001-4014.
Sitanggang, A. B. (2020). Peran penting hidrokoloid dalam produk konfeksioneri. Foodreview Indonesia, XV(5):50-54.
Stein, R. (2000). Know the enemy: Understanding the basics of foodborne pathogens. Meat and Poultry, 10(1):46-51.
Winarti, C. (2012). Teknologi produksi dan aplikasi pengemas edible antimikroba berbasis pati. Jurnal Penelitian dan Pengembangan Pertanian, 3(31):56-64.
Wu, K., Yan, Z., Wu, Z., Li, J., Zhong, W., Ding, L., Zhong, T. & Jiang, T. (2023). Recent advances in the preparation, antibacterial mechanisms, and applications of chitosan. Journal of Functional Biomaterials, 15(318):1-21.
Yang, S., Wang, M, Gao, J., Liu, J., Ritian, J., Lin, R., Weng, W., & Aweya, J. J (2023). Sodium chloride augments the antibacterial activity of a novel penaeid shrimp-derived peptide (GPCR10) against halotolerant Staphylococcus aureus. LWT – Food Science and Technologie, 184(115096):1-10.
Copyright (c) 2025 Journal of Marine and Coastal Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.