POTENCY OF CHLORELLA SPP. AS AN ANTIOXIDANT AND ANTI-INFLAMMATORY AGENT
Downloads
Background: Chlorella is a natural marine product that belongs to the type of unicellular green microalgae which is currently widely used as an alternative therapy because of its secondary metabolite content which has various benefits with minimal side effects. Chlorella has also been widely studied for activities such as being an antioxidant and anti-inflammatory agent that plays a role in prevention and treatment. Purpose: This literature review aims to dig up information about the potency of Chlorella as an antioxidant and anti-inflammatory agent based on several previous studies. Review: Based on the online existing literature from the PubMed and Google Scholar databases, the results of studies on the potential of Chlorella as an antioxidant and anti-inflammatory agent were analyzed. Based on the literature review, Chlorella can act as an antioxidant and anti-inflammatory agent due to the phenolic compounds, carotenoid pigments and chlorophyll, and extracellular polysaccharides (EPS) contained in it. Conclusion: Chlorella has antioxidant and anti-inflammatory activity and has the potential to prevent and treat several types of diseases.
Abdel-karim, O.H., Gheda, S., Ismail, G., 2020. Phytochemical Screening and antioxidant activity of Chlorella vulgaris. Delta J. Sci. Vol.41, Pp.81–91.
Abu-Serie, M.M., Habashy, N.H., Attia, W.E., 2018. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complement. Altern. Med. Vol.18, Pp.1–13.
Ahmad, Z., Damayanti, 2018. Penuaan Kulit : Patofisiologi dan Manifestasi Klinis. Berk. Ilmu Kesehat. Kulit dan Kelamin – Period. Dermatology Venereol. Vol.30, Pp.208–215.
Arreola, R., Quintero-Fabián, S., Lopez-Roa, R.I., Flores-Gutierrez, E.O., Reyes-Grajeda, J.P., Carrera-Quintanar, L., Ortuno-Sahagun, D., 2015. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015.
Barboríková, J., Å utovská, M., Kazimierová, I., JoÅ¡ková, M., Fraňová, S., Kopeckí½, J., Capek, P., 2019. Extracellular polysaccharide produced by Chlorella vulgaris – Chemical characterization and anti-asthmatic profile. Int. J. Biol. Macromol. Vol.135.
Bariyyah, S.K., Fasya, A.G., Abidin, M., Hanapi, A., 2013. Golongan Senyawa Aktif Ektrak Kasar Mikroalga Chlorella sp. Hasil Kultivasi Dalam Medium Ekstrak Tauge. Alchemy. Vol.2, Pp.150–204.
Barkia, I., Saari, N., Manning, S.R., 2019. Microalgae for -value products towards human health and w nutrition. Mar. Drugs. Vol.17, Pp.1–29.Batubara, I., Mitsunaga, T., Ohashi, H., 2009. Screening antiacne potency of Indonesian medicinal plants: Antibacterial, lipase inhibition, and antioxidant activities. J. Wood Sci. Vol.55, Pp.230–235.
Bito, T., Okumura, E., Fujishima, M., Watanabe, F., 2020. mllPotential of chlorella as a dietary supplement to l,n promote human health. Nutrients.Vol.12, Pp.1–21.
Bush, A., 2019. Cytokines and chemokines as biomarkers lof future asthma. Front. Pediatr. Vol.7, Pp.1–11.
Capek, P., Matulová, M., Å utovská, M., Barboríková, J., Molitorisová, M., Kazimierová, I., 2020. Chlorella vulgaris α-L-arabino-α-L-rhamno-α,β-D-galactan structure and mechanisms of its anti-inflammatory and anti-remodelling effects. Int. J. Biol. Macromol. Vol.162, Pp.188–198.
Chatterjee, S., 2016. Oxidative Stress, Inflammation, and Disease, Oxidative Stress and Biomaterials. Elsevier Inc.
Chen, C.L., Liou, S.F., Chen, S.J., Shih, M.F., 2011. Protective effects of Chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Regul. Toxicol. Pharmacol. Pp.112–119.
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Vol. 9, Pp.7204–7218.
Chen, Y., Liu, X., Wu, L., Tong, A., Zhao, L., Liu, B., Zhao, C., 2018. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr. Polym. Vol.185, Pp.120–126.
Chiu, H.F., Fu, H.Y., Lu, Y.Y., Han, Y.C., Shen, Y.C., Venkatakrishnan, K., Golovinskaia, O., Wang, C.K., 2017. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharm. Biol. Pp.1041–1046.
Chiu, H.F., Hsiao, S.C., Lu, Y.Y., Han, Y.C., Shen, Y.C., Venkatakrishnan, K., Wang, C.K., 2018. Efficacy of protein rich pearl powder on antioxidant status in a randomized placebo-controlled trial. J. Food Drug Anal. Vol.26, Pp.309–317.
Chiu, H.F., Lee, H.J., Han, Y.C., Venkatakrishnan, K., Golovinskaia, O., Wang, C.K., 2021. Beneficial effect of Chlorella pyrenoidosa drink on healthy subjects: A randomized, placebo-controlled, double-blind, cross-over clinical trial. J. Food Biochem. Pp.1–10.
Choi, Y., Lee, M.K., Lim, S.Y., Sung, S.H., Kim, Y.C., 2009. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1β by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br. J. Pharmacol. Vol.56.
Dai, J., Mumper, R.J., 2010. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer mmlProperties. Molecules. Vol.15, Pp.7313–7352.
De Jesus Raposo, M.F., De Morais, R.M.S.C., De Morais, A.M.M.B., 2013. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs. Vol.11, Pp.233–252.
de Melo, R.G., de Andrade, A.F., Bezerra, R.P., Viana Marques, D. de A., da Silva, V.A., Paz, S.T., de Lima Filho, J.L., Porto, A.L.F., 2019. Hydrogel-based Chlorella vulgaris extracts: a new topical formulation for wound healing treatment. J. Appl. Phycol. Vol.31, Pp.3653–3663.
de Santana Souza, M.T., Almeida, J.R.G. da S., de Souza Araujo, A.A., Duarte, M.C., Gelain, D.P., Moreira, J.C.F., dos Santos, M.R.V., Quintans-Júnior, L.J., 2014. Structure-activity relationship of terpenes with anti-inflammatory profile - A systematic review. Basic Clin. Pharmacol. Toxicol. Vol.115,Pp.244–256.
Deli, J., Gonda, S., Nagy, L.Z.S., Szabó, I., Gulyás-Fekete, G., Agócs, A., Marton, K., Vasas, G., 2014. Carotenoid composition of three bloom-forming algae species. Food Res. Int. Vol.65, Pp.215–223.
Donato, A.J., Morgan, R.G., Walker, A.E., Lesniewski, L.A., 2015. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell. Cardiol. Pp.122–135.
Fernández-Linares, L.C., Guerrero Barajas, C., Durán Páramo, E., Badillo Corona, J.A., 2017. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol. Vol.244, Pp.400–406.
Fithriani, D., Amini, S., Melanie, S., 2015. Uji Fitokimia Kandungan Total Fenol dan Aktivitas dan Antioksidan Mikroalga Spirulina sp., Chlorella sp., dan Nannochloropsis sp . Activity of Microalgae Spirulina sp ., Chlorella sp . and. JPB Kelaut. dan Perikan. Vol.10, Pp.101–109.
Fu, W., Guomundsson, í“., Paglia, G., Herjólfsson, G., Andrésson, í“.S., Palsson, B.O., Brynjólfsson, S., 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. Vol.97, Pp.2395–2403.
Haidari, F., Homayouni, F., Helli, B., Haghighizadeh, M.H., Farahmandpour, F., 2018. Effect of chlorella supplementation on systematic symptoms and serum levels of prostaglandins, inflammatory and oxidative markers in women with primary dysmenorrhea. Eur. J. Obstet. Gynecol. Reprod. Biol. Vol.229, Pp.185–189.
Hernayanti, Simanjuntak, I., 2019. Antioxidant Effect of Chlorella vulgaris on Physiological Response of Rat Induced by Carbon Tetrachloride. Biosaintifika. Vol.11, Pp.84–90.
Hoeffler, U., 1977. Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria. J. Clin. Microbiol. Vol.6, Pp.555–558.
Ilavenil, S., Kim, D.H., Vijayakumar, M., Srigopalram, S., Roh, S.G., Arasu, M.V., Lee, J.S., Choi, K.C., 2016. Potential role of marine algae extract on 3T3-L1 cell proliferation and differentiation: an in vitro approach. Biol. Res. Vol.9, Pp.1–11.
Jayshree, A., Jayashree, S., Thangaraju, N., 2016. Chlorella vulgaris and Chlamydomonas reinhardtii: Effective Antioxidant, Antibacterial and Anticancer Mediators. Indian J. Pharm. Sci. Vol.78.
Kang, H., Lee, C.H., Kim, J.R., Kwon, J.Y., Seo, S.G., Han, J.G., Kim, B.G., Kim, J.E., Lee, K.W., 2015. Chlorella vulgaris attenuates dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Int. J. Mol. Sci. Vol.16, Pp.21021–21034.
Krakauer, T., 2004. Molecular therapeutic targets in inflammation: Cyclooxygenase and NF-κB. Curr. Drug Targets Inflamm. Allergy.Vol.3, Pp.317–324.
Kralovec, J.A., Power, M.R., Liu, F., Maydanski, E., Ewart, H.S., Watson, L. V., Barrow, C.J., Lin, T.J., 2005. An aqueous Chlorella extract inhibits IL-5 production by mast cells in vitro and reduces ovalbumin-induced eosinophil infiltration in the airway in mice in vivo. Int. Immunopharmacol. Vol.5, Pp.689–698.
Lee, S.A., Moon, S.M., Choi, Y.H., Han, S.H., Park, B.R., Choi, M.S., Kim, J.S., Kim, Y.H., Kim, D.K., Kim, C.S., 2017. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed. Pharmacother. Vol.93, Pp.1055–1064.
Lin, R., Liu, X., Meng, Y., Xu, M., Guo, J., 2015. Effects of Laminaria japonica polysaccharides on airway inflammation of lungs in an asthma mouse model. Multidiscip. Respir. Med. Vol.10, Pp.1–8.
Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., Chen, F., 2014. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Mar. Drugs . Vol.12, Pp.3487–3515.
Machmud, E., Ruslin, M., Waris, R., Asse, R.A., Qadafi, A.M., Achmad, H., 2020. Effect of the application of chlorella vulgaris ointment to the number of fibroblast cells as an indicator of wound healing in the soft tissue of pig ears. Pesqui. Bras. Odontopediatria Clin. Integr. Vol.20, Pp.1–10.
Molyneux P, 2004. The Use of The Stable Free Radical Diphenylpicryl-Hydrazyl (DPPH) for Estimating Anti-Oxidant Activity. Songklanakarin J. Sci. Technol. Vol.26, Pp.211–219.
Mtaki, K., Kyewalyanga, M.S., Mtolera, M.S.P., 2020. applied sciences Assessment of Antioxidant Contents and Free Radical-Scavenging Capacity of Chlorella vulgaris Cultivated in Low Cost Media.
Nauroth, J.M., Liu, Y.C., Van Elswyk, M., Bell, R., Hall, E.B., Chung, G., Arterburn, L.M., 2010. Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo. Lipids.Vol. 45, Pp.375–384.
Novianti, T., Zainuri, M., Widowati, I., 2019. Aktivitas Antioksidan dan Identifikasi Golongan Senyawa Aktif Ekstrak Kasar Mikroalga Chlorella vulgaris yang Dikultivasi Sumber Cahaya yang Berbeda. Barakuda 45. Vol.1, Pp.72–87.
Olmez, I., Ozyurt, H., 2012. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem. Int. Vol.60, Pp.208–212.
Osafo, N., Agyare, C., Obiri, D.D., Antwi, A.O., 2017. Mechanism of Action of Nonsteroidal Anti- Inflammatory Drugs. In: Nonsteroidal Anti-Inflammatory Drugs. IntechOpen, London.
Pantami, H.A., Bustamam, M.S.A., Lee, S.Y., Ismail, I.S., Faudzi, S.M.M., Nakakuni, M., Shaari, K., 2020. Comprehensive GCMS and LC-MS/MS metabolite profiling of chlorella vulgaris. Mar. Drugs 18.
Park, J.S., Chyun, J.H., Kim, Y.K., Line, L.L., Chew, B.P., 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. Vol.7, Pp.1–10.
Patel, S., 2012. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech .Vol.2, Pp.171–185.
Patias, L.D., Fernandes, A.S., Petry, F.C., Mercadante, A.Z., Jacob-Lopes, E., Zepka, L.Q., 2017. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res. Int. Vol.100, Pp.260–266.
Rosahdi, T.D., Susanti, Y., Suhendar, D., 2015. Uji Aktivitas Daya Antioksidan Biopigmen Pada Fraksi Aseton dari Mikroalga Chlorella vulgaris. J. ISTEK IX, Pp.1–16.
Seyedsadjadi, N., Grant, R., 2021. The potential benefit of monitoring oxidative stress and inflammation in the prevention of non-communicable diseases (NCDs). Antioxidants.Vol.10, Pp.1–32.
Sibi, G., 2015. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment. J. Adv. Pharm. Technol. Res. Vol.6, Pp.7–12.
Sibi, G., Rabina, S., 2016. Inhibition of Pro-inflammatory vvvmediators and cytokines by Chlorella Vulgaris lllextracts. Pharmacognosy Res. Vol.8, Pp.118–122.
Sikiru, A.B., Arangasamy, A., Alemede, I.C., Egena, S.S.A., Bhatta, R., 2021. Dietary supplementation effects of Chlorella vulgaris on performances , oxidative stress status and antioxidant enzymes activities of prepubertal New Zealand White rabbits. Bull. Natl. Res. Cent. Vol.43, Pp.1–7.
Sikiru, A.B., Arangasamy, A., Alemede, I.C., Guvvala, P.R., Egena, S.S.A., Ippala, J.R., Bhatta, R., 2019. Chlorella vulgaris supplementation effects on performances , oxidative stress and antioxidant genes expression in liver and ovaries of New Zealand White rabbits. Heliyon.Vol.5, Pp.e02470.
Sivathanu, B., Palaniswamy, S., 2012. Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomed. Prev. Nutr. Vol.2, Pp.276–282.
Soontornchaiboon, W., Joo, S.S., Kim, S.M., 2012. Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol. Pharm. Bull. Vol.35.
Soumelis, V., Reche, P.A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M., Ho, S., Antonenko, S., Lauerma, A., Smith, K., Gorman, D., Zurawski, S., Abrams, J., Menon, S., McClanahan, T., De Waal-Malefyt, R., Bazan, F., Kastelein, R.A., Liu, Y.J., 2002. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat. Immunol. Vol.3, Pp.673–680.
Speranza, L., Pesce, M., Patruno, A., Franceschelli, S., De Lutiis, M.A., Grilli, A., Felaco, M., 2012. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar. Drugs .Vol.10.
Su, K.Y., Yu, C.Y., Chen, Y.P., Hua, K.F., Chen, Y.L.S., 2014. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement. Altern. Med. Vol.14.
Villarruel-López, A., Ascencio, F., Nuníµ, K., 2017. Microalgae, a Potential Natural Functional Food Source- A Review. Polish J. Food Nutr. Sci. Vol.67, Pp.251–263.
Wang, Q., Kuang, H., Su, Y., Sun, Y., Feng, J., Guo, R., Chan, K., 2013. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. Vol.146, Pp.9–39.
Wang, Y., Peng, J., 2008. Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J. Microbiol. Biotechnol. Vol.24, Pp.1915–1922.
Wu, L.-C., Annie Ho, J., Shieh, M.-C., Lu, I.-W., 2005. Antioxidant and Antiproliferative Activities of Spirulina and Chlorella Water Extracts. J. Agric. Food Chem Vol.53, Pp.4207–4212.
Yadav, Anuj, Kumari, R., Yadav, Ashwani, Mishra, J.P., Seweta, S., Prabha, S., 2016. Antioxidants and its functions in human body - A Review. Res. Environ. Life Sci. Vol.9, Pp.1328–1331.
Yadavalli, R., Ratnapuram, H., Motamarry, S., Reddy, C.N., Ashokkumar, V., Kuppam, C., 2020. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Convers. Biorefinery.
Zhang, R., Chen, J., Mao, X., Qi, P., Zhang, X., 2019. Anti-inflammatory and anti-aging evaluation of pigment–protein complex extracted from Chlorella pyrenoidosa. Mar. Drugs.Vol.17.
Zulaikhah, S.T., 2017. The Role of Antioxidant to Prevent Free Radicals in The Body. Sains Med. Vol.8, Pp.39
Copyright (c) 2022 Journal of Vocational Health Studies
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- The authors agree to transfer the transfer copyright of the article to the Journal of Vocational Health Studies (JVHS) effective if and when the paper is accepted for publication.
- Legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA), implies that publication can be used for non-commercial purposes in its original form.
- Every publications (printed/electronic) are open access for educational purposes, research, and library. Other that the aims mentioned above, editorial board is not responsible for copyright violation.
Journal of Vocational Health Studies is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License