Oral field cancerization: Genetic profiling for a prevention strategy for oral potentially malignant disorders
Downloads
Background: Oral cancer therapy, such as radiation or surgical treatment, has pernicious long-term effects that patients suffer throughout their life, the disability being considerable with delayed diagnosis. It is well known that many oral cancers develop from oral potentially malignant disorders (OPMDs). Patients diagnosed with OPMDs may have an increased risk of developing cancer anywhere in the oral cavity. Early detection and intervention could be essential prevention strategies to inhibit oral cancer progression. OPMDs may not immediately develop into carcinoma. However, this condition provides a "field” of specific abnormalities wherein evolving altered genetic cells can be explained with the "field cancerization” concept. Purpose: This review aims to describe the "field cancerization” concept in oral cancer and OPMD, which is expected to contribute to a better clinical management strategy for oral cancer prevention. Review: "Oral field cancerization” describes oral cancers that develop in multifocal areas of pre-cancerous changes. It can be found as histologically abnormal tissue surrounding the tumor, suggesting that oral cancer often consists of multiple independent lesions. Conclusion: The oral field cancerization concept should prompt healthcare professionals to remind their patients that frequent oral examination with histological studies and molecular testing is mandatory for those at high risk of developing malignancies.
Downloads
Mallegowda H, Theresa R, Amberkar V. Oral field cancerization: Tracking the invisible. Int J Oral Heal Sci. 2019; 9(1): 28–35. doi: https://doi.org/10.4103/ijohs.ijohs_34_18
Hecht SS, Hatsukami DK. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer. 2022; 22(3): 143–55. doi: https://doi.org/10.1038/s41568-021-00423-4
Bhandari A, Bhatta N. Tobacco and its relationship with oral health. J Nepal Med Assoc. 2021; 59(243): 1204–6. doi: https://doi.org/10.31729/jnma.6605
Vassoler T, Dogenski LC, Sartori VK, Presotto JS, Cardoso MZ, Zandoná J, Trentin MS, Linden MS, Palhano HS, Vargas JE, De Carli JP. Evaluation of the genotoxicity of tobacco and alcohol in oral mucosa cells: a pilot study. J Contemp Dent Pract. 2021; 22(7): 745–50. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/34615778
Bouaoud J, Bossi P, Elkabets M, Schmitz S, van Kempen LC, Martinez P, Jagadeeshan S, Breuskin I, Puppels GJ, Hoffmann C, Hunter KD, Simon C, Machiels J-P, Grégoire V, Bertolus C, Brakenhoff RH, Koljenović S, Saintigny P. Unmet needs and perspectives in oral cancer prevention. Cancers (Basel). 2022; 14(7): 1815. doi: https://doi.org/10.3390/cancers14071815
Abati S, Bramati C, Bondi S, Lissoni A, Trimarchi M. Oral cancer and precancer: A narrative review on the relevance of early diagnosis. Int J Environ Res Public Health. 2020; 17(24): 9160. doi: https://doi.org/10.3390/ijerph17249160
Patil VM, Noronha V, Joshi A, Abhyankar A, Menon N, Dhumal S, Prabhash K. Beyond conventional chemotherapy, targeted therapy and immunotherapy in squamous cell cancer of the oral cavity. Oral Oncol. 2020; 105: 104673. doi: https://doi.org/10.1016/j.oraloncology.2020.104673
Desai RS, Shirsat PM, Bansal S, Prasad P, Satish Arvandekar A. Oral field cancerization: A critical appraisal. Oral Oncol. 2021; 118: 105304. doi: https://doi.org/10.1016/j.oraloncology.2021.105304
Poh CF, Zhang L, Anderson DW, Durham JS, Williams PM, Priddy RW, Berean KW, Ng S, Tseng OL, MacAulay C, Rosin MP. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin Cancer Res. 2006; 12(22): 6716–22. doi: https://doi.org/10.1158/1078-0432.CCR-06-1317
Warnakulasuriya S, Ariyawardana A. Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med. 2016; 45(3): 155–66. doi: https://doi.org/10.1111/jop.12339
Aguirre"Urizar JM, Lafuente"Ibáñez de Mendoza I, Warnakulasuriya S. Malignant transformation of oral leukoplakia: Systematic review and meta"analysis of the last 5 years. Oral Dis. 2021; 27(8): 1881–95. doi: https://doi.org/10.1111/odi.13810
Pinto AC, Caramíªs J, Francisco H, Chen A, Azul AM, Marques D. Malignant transformation rate of oral leukoplakia”systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020; 129(6): 600-611.e2. doi: https://doi.org/10.1016/j.oooo.2020.02.017
Brignardello-Petersen R. Proliferative verrucous leukoplakia and erythroplakia are probably the disorders with the highest rate of malignant transformation. J Am Dent Assoc. 2020; 151(8): e62. doi: https://doi.org/10.1016/j.adaj.2020.01.035
Aghbari SMH, Abushouk AI, Attia A, Elmaraezy A, Menshawy A, Ahmed MS, Elsaadany BA, Ahmed EM. Malignant transformation of oral lichen planus and oral lichenoid lesions: A meta-analysis of 20095 patient data. Oral Oncol. 2017; 68: 92–102. doi: https://doi.org/10.1016/j.oraloncology.2017.03.012
González"Moles MÁ, Ramos"García P, Warnakulasuriya S. An appraisal of highest quality studies reporting malignant transformation of oral lichen planus based on a systematic review. Oral Dis. 2021; 27(8): 1908–18. doi: https://doi.org/10.1111/odi.13741
Offen E, Allison JR. What is the malignant transformation potential of oral lichen planus? Evid Based Dent. 2022; 23(1): 36–7. doi: https://doi.org/10.1038/s41432-022-0240-4
Sathiasekar A, Mathew D, Jaish Lal M, Arul Prakash A, Goma Kumar K. Oral field cancerization and its clinical implications in the management in potentially malignant disorders. J Pharm Bioallied Sci. 2017; 9(5): 23. doi: https://doi.org/10.4103/jpbs.JPBS_109_17
Mohan M, Jagannathan N. Oral field cancerization: an update on current concepts. Oncol Rev. 2014; 8(1): 244. doi: https://doi.org/10.4081/oncol.2014.244
Angadi P V., Savitha JK, Rao SS, Sivaranjini Y. Oral field cancerization: current evidence and future perspectives. Oral Maxillofac Surg. 2012; 16(2): 171–80. doi: https://doi.org/10.1007/s10006-012-0317-x
Ha PK, Califano JA. The molecular biology of mucosal field cancerization of the head and neck. Crit Rev Oral Biol Med. 2003; 14(5): 363–9. doi: https://doi.org/10.1177/154411130301400506
Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018; 18(1): 19–32. doi: https://doi.org/10.1038/nrc.2017.102
Simple M, Suresh A, Das D, Kuriakose MA. Cancer stem cells and field cancerization of Oral squamous cell carcinoma. Oral Oncol. 2015; 51(7): 643–51. doi: https://doi.org/10.1016/j.oraloncology.2015.04.006
Braakhuis BJM, Tabor MP, René Leemans C, van der Waal I, Snow GB, Brakenhoff RH. Second primary tumors and field cancerization in oral and oropharyngeal cancer: Molecular techniques provide new insights and definitions. Head Neck. 2002; 24(2): 198–206. doi: https://doi.org/10.1002/hed.10042
Escher A, Piotet E, Waridel F, Iggo R, Monnier P. p53 mutation in histologically normal mucosa of the aero-digestive tract is not a marker of increased risk for second primary carcinoma in head and neck cancer patients. Eur Arch Oto-Rhino-Laryngology. 2009; 266(4): 547–51. doi: https://doi.org/10.1007/s00405-008-0780-z
Gabusi A, Gissi DB, Montebugnoli L, Asioli S, Tarsitano A, Marchetti C, Balbi T, Helliwell TR, Foschini MP, Morandi L. Prognostic impact of intra-field heterogeneity in oral squamous cell carcinoma. Virchows Arch. 2020; 476(4): 585–95. doi: https://doi.org/10.1007/s00428-019-02656-z
Bednarczyk K, Gawin M, Chekan M, Kurczyk A, Mrukwa G, Pietrowska M, Polanska J, Widlak P. Discrimination of normal oral mucosa from oral cancer by mass spectrometry imaging of proteins and lipids. J Mol Histol. 2019; 50(1): 1–10. doi: https://doi.org/10.1007/s10735-018-9802-3
Angadi P V., Patil P V., Kale AD, Hallikerimath S, Babji D. Myofibroblast presence in apparently normal mucosa adjacent to oral squamous cell carcinoma associated with chronic tobacco/areca nut use: evidence for field cancerization. Acta Odontol Scand. 2014; 72(7): 502–8. doi: https://doi.org/10.3109/00016357.2013.871648
Amer HW, Waguih HM, El-Rouby DH. Development of field cancerization in the clinically normal oral mucosa of shisha smokers. Int J Dent Hyg. 2019; 17(1): 39–45. doi: https://doi.org/10.1111/idh.12362
Giaretti W, Pentenero M, Gandolfo S, Castagnola P. Chromosomal instability, aneuploidy and routine high-resolution DNA content analysis in oral cancer risk evaluation. Futur Oncol. 2012; 8(10): 1257–71. doi: https://doi.org/10.2217/fon.12.116
Pentenero M, Donadini A, Di Nallo E, Maffei M, Marino R, Familiari U, Castagnola P, Gandolfo S, Giaretti W. Field effect in oral precancer as assessed by DNA flow cytometry and array-CGH. J Oral Pathol Med. 2012; 41(2): 119–23. doi: https://doi.org/10.1111/j.1600-0714.2011.01085.x
Peralta-Mamani M, Terrero-Pérez Á, Tucunduva RMA, Rubira CMF, Santos PS da S, Honório HM, Rubira-Bullen IRF. Occurrence of field cancerization in clinically normal oral mucosa: A systematic review and meta-analysis. Arch Oral Biol. 2022; 143: 105544. doi: https://doi.org/10.1016/j.archoralbio.2022.105544
López-Blanc SA, Collet AM, Gandolfo MS, Femopase F, Hernández SL, Tomasi VH, Paparella ML, Itoiz ME. Nucleolar organizer regions (AgNOR) and subepithelial vascularization as field cancerization markers in oral mucosa biopsies of alcoholic and smoking patients. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2009; 108(5): 747–53. doi: https://doi.org/10.1016/j.tripleo.2009.06.028
Chaves FN, Bezerra TMM, Moraes DC, Costa SF dos S, Silva PGB, Alves APNN, Costa FWG, Bernardes VF, Pereira KMA. Loss of heterozygosity and immunoexpression of PTEN in oral epithelial dysplasia and squamous cell carcinoma. Exp Mol Pathol. 2020; 112: 104341. doi: https://doi.org/10.1016/j.yexmp.2019.104341
Nakashima T, Tomita H, Hirata A, Ishida K, Hisamatsu K, Hatano Y, Kanayama T, Niwa A, Noguchi K, Kato K, Miyazaki T, Tanaka T, Shibata T, Hara A. Promotion of cell proliferation by the proto-oncogene DEK enhances oral squamous cell carcinogenesis through field cancerization. Cancer Med. 2017; 6(10): 2424–39. doi: https://doi.org/10.1002/cam4.1157
Lopes CB, Magalhí£es LL, Teófilo CR, Alves APNN, Montenegro RC, Negrini M, Ribeiro-dos-Santos í‚. Differential expression of hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c suggests a field effect in oral cancer. BMC Cancer. 2018; 18(1): 721. doi: https://doi.org/10.1186/s12885-018-4631-z
Yang X, Shi L, Zhou Z, Liu W. Podoplanin and ABCG2 expression in oral erythroplakia revisited: Potential evidence for cancer stem cells driving the process of field cancerization. Oral Oncol. 2020; 101: 104368. doi: https://doi.org/10.1016/j.oraloncology.2019.07.011
Padin-Iruegas E, Chamorro-Petronacci CM, Sines-Cajade I, Lorenzo-Pouso AI, Blanco-Carrión A, Pérez-Jardón A, Gándara-Vila P, Pérez-Sayans M. DNA methylation by bisulfite next-generation sequencing for MLH1 and MGMT in oral squamous cell carcinomas and potentially malignant disorders: An integrative analysis towards field cancerization. Medicina (B Aires). 2022; 58(7): 878. doi: https://doi.org/10.3390/medicina58070878
Govindaraj PK, Kallarakkal TG, Mohd Zain R, Tilakaratne WM, Lew HL. Expression of Ki-67, Cornulin and ISG15 in non-involved mucosal surgical margins as predictive markers for relapse in oral squamous cell carcinoma (OSCC). Ha P, editor. PLoS One. 2021; 16(12): e0261575. doi: https://doi.org/10.1371/journal.pone.0261575
de Freitas Filho SAJ, Coutinho-Camillo CM, Oliveira KK, Bettim BB, Pinto CAL, Kowalski LP, Oliveira DT. Prognostic implications of ALDH1 and Notch1 in different subtypes of oral cancer. Santhekadur PK, editor. J Oncol. 2021; : 6663720. doi: https://doi.org/10.1155/2021/6663720
Feng J, Zhou Z, Shi L, Yang X, Liu W. Cancer stem cell markers ALDH1 and Bmi1 expression in oral erythroplakia revisited: Implication for driving the process of field cancerization. J Oral Pathol Med. 2020; 49(1): 96–9. doi: https://doi.org/10.1111/jop.12955
Ahmed S, Khan S, Qureshi MA, Bukhari U, Anis M, Mughal MN. Expressional variations of Kaiso: an association with pathological characteristics and field cancerization of OSCC. BMC Cancer. 2022; 22(1): 990. doi: https://doi.org/10.1186/s12885-022-10014-7
Vadla P, Yeluri S, Deepthi G, Guttikonda VR, Taneeru S, Naramala S. Stathmin! An immunohistochemical analysis of the novel marker in oral squamous cell carcinoma and oral leukoplakia. Asian Pacific J Cancer Prev. 2020; 21(11): 3317–23. doi: https://doi.org/10.31557/APJCP.2020.21.11.3317
Qiao B, He B, Cai J, Yang W. The expression profile of Oct4 and Sox2 in the carcinogenesis of oral mucosa. Int J Clin Exp Pathol. 2014; 7(1): 28–37. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/24427323
Feitosa SG, Viana KF, Luna ECM, Costa FWG, Cavalcante RB, Chaves FN, Chaves HV, Pereira KMA. Immunohistochemical evaluation of GLUT-3 and GLUT-4 in oral epithelial dysplasia and oral squamous cell carcinoma. Asian Pac J Cancer Prev. 2018; 19(7): 1779–83. doi: https://doi.org/10.22034/APJCP.2018.19.7.1779
Gonzalez-Moles. Substance P and NK-1R expression in oral precancerous epithelium. Oncol Rep. 2009; 22(6): 1325–31. doi: https://doi.org/10.3892/or_00000571
Miguel AFP, Embaló B, Alves Dias HB, Rivero ERC. Immunohistochemical expression of MMP-9, TIMP-1, and vimentin and its correlation with inflammatory reaction and clinical parameters in oral epithelial dysplasia. Appl Immunohistochem Mol Morphol. 2021; 29(5): 382–9. doi: https://doi.org/10.1097/PAI.0000000000000910
Yu T, Tang Q, Chen X, Fan W, Zhou Z, Huang W, Liang F. TGF"β1 and IL"17A comediate the protumor phenotype of neutrophils to regulate the epithelial"mesenchymal transition in oral squamous cell carcinoma. J Oral Pathol Med. 2021; 50(4): 353–61. doi: https://doi.org/10.1111/jop.13122
Tabatabaeifar S, Larsen MJ, Larsen SR, Kruse TA, Thomassen M, Sí¸rensen JA. Investigating a case of possible field cancerization in oral squamous cell carcinoma by the use of next-generation sequencing. Oral Oncol. 2017; 68: 74–80. doi: https://doi.org/10.1016/j.oraloncology.2017.03.018
Pérez-Ruiz E, Gutiérrez V, Muñoz M, Oliver J, Sánchez M, Gálvez-Carvajal L, Rueda-Domínguez A, Barragán I. Liquid biopsy as a tool for the characterisation and early detection of the field cancerization effect in patients with oral cavity carcinoma. Biomedicines. 2021; 9(10): 1478. doi: https://doi.org/10.3390/biomedicines9101478
Gabusi A, Morandi L, Asioli S, Foschini MP. Oral field cancerization: history and future perspectives. Pathologica. 2017; 109(1): 60–5. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/28635994
van Oijen MG, Slootweg PJ. Oral field cancerization: carcinogen-induced independent events or micrometastatic deposits? Cancer Epidemiol Biomarkers Prev. 2000; 9(3): 249–56. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/10750662
Nelem-Colturato CB, Cury PM, Pereira TM, Cosso IS, Pivato K, Volpato LER, Borges AH. Sextuple tumors in head and neck area: evidence of field cancerization. Case Rep Pathol. 2018; 2018: 8428395. doi: https://doi.org/10.1155/2018/8428395
Fortuna G, Mignogna MD. Oral field cancerization. Can Med Assoc J. 2011; 183(14): 1622–1622. doi: https://doi.org/10.1503/cmaj.110172
Bansal R, Nayak B, Bhardwaj S, Vanajakshi C, Das P, Somayaji N, Sharma S. Cancer stem cells and field cancerization of head and neck cancer - An update. J Fam Med Prim Care. 2020; 9(7): 3178–82. doi: https://doi.org/10.4103/jfmpc.jfmpc_443_20
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field cancerization in NSCLC: A new perspective on microRNAs in macrophage polarization. Int J Mol Sci. 2021; 22(2): 746. doi: https://doi.org/10.3390/ijms22020746
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol. 2019; 343: 103729. doi: https://doi.org/10.1016/j.cellimm.2017.12.003
Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer. 2019; 18(1): 65. doi: https://doi.org/10.1186/s12943-019-0961-y
Graham TA, McDonald SA, Wright NA. Field cancerization in the GI tract. Futur Oncol. 2011; 7(8): 981–93. doi: https://doi.org/10.2217/fon.11.70
Gadaleta E, Thorn GJ, Ross"Adams H, Jones LJ, Chelala C. Field cancerization in breast cancer. J Pathol. 2022; 257(4): 561–74. doi: https://doi.org/10.1002/path.5902
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License