Proximate Analysis and Physical Characteristics of Analogue Rice Based on Breadfruit Flour and Anchovy
Analisis Proksimat dan Karakteristik Fisik Beras Analog Berbasis Tepung Sukun dengan Penambahan Ikan Teri Nasi

Background: Rice serves as a fundamental dietary component for Indonesians, therefore several complete high-nutrition analogue rice developed. The composite flour used in this study is based on breadfruit flour, with the addition of anchovies to enhance the nutritional content in the formula.
Objectives: To determine the chemical and physical characteristics of analogue rice based on breadfruit flour and anchovies.
Methods: Experimental research with a one-factor Completely Randomized Design (CRD). Four treatments consisted of (0%, 2.5%, 5%, and 7.5%) addition of anchovies in analogue rice formula and three replication treatments. Chemical tests consisting of water, ash, fat, protein, and carbohydrate content. Physical tests included rice density, cooking time, water holding capacity (WHC), 1000 grain weight, and hardness level. Data analysis was performed using the Analysis of Variance (ANOVA) and Post Hoc Duncan Multiple Range Test (DMRT).
Results: Anchovies improve ash and protein, decrease fat and are not significantly different to carbohydrate and energy compared to the control. Analogue rice contained 4.94-8.41% protein. The water content meets the Indonesian National Standard (SNI) with a maximum limit of 14%. This study's formulation reduced WHC and increased bulk density. Cooking time, 1000 grain weight, and hardness level were not different compared to the control. The cooking time of analogue rice ranged from 15-16 minutes, and the weight of 1000 grains ranged from 16.33-17.57 g.
Conclusions: Anchovies in the analogue rice formula result in higher protein, lower fat, and carbohydrates compared to the control. The moisture content of the analogue rice meets SNI.
Shobana, S. et al. Even minimal polishing of an Indian parboiled brown rice variety leads to increased glycemic responses. Asia Pac. J. Clin. Nutr. 26, 829–836 (2017). https://doi.org/10.6133/apjcn.112016.08
Kementerian Kesehatan. Food Composition Table—Indonesia (Daftar Komposisi Bahan Makanan). (2017).
Sumardiono, S., Pudjihastuti, I., Supriyo, E. & Amalia, R. Physico-Chemical Properties of Calcium-Fortified Analog Rice from Composite Flour (Cassava, Corn, and Snakehead Fish) for Osteoporosis Prevention. J. Vocat. Stud. Appl. Res. 2, 10–15 (2020). Available from: http://dx.doi.org/10.14710/jvsar.v2i2.8062
Kusumayanti, H., Sumardiono, S. & Jos, B. The combined effect of three raw materials composition on the production of analog rice: Characteristics properties. Mater. Today Proc. 63, S418–S423 (2022). https://doi.org/10.1016/j.matpr.2022.04.087
Nayar, S. & Madhu, S. V. Glycemic index of wheat and rice are similar when consumed as part of a North Indian mixed meal. Indian J. Endocrinol. Metab. 24, 251–255 (2020). https://doi.org/10.4103/ijem.IJEM_4_20
Fajriah, F., Faridah, D. N. & Herawati, D. Penurunan Indeks Glikemik Nasi Putih dengan Penambahan Ekstrak Serai dan Daun Salam. J. Teknol. dan Ind. Pangan 33, 169–177 (2022). https://doi.org/10.6066/jtip.2022.33.2.169
Mukesh S, Sikarwar Boey, J. H., Kumuntha, S., Bavani, Devi Valeisamy Ling, K. Y. & Kaveti, B. A review on Artocarpus altilis (Parkinson) Fosberg (breadfruit). J. Appl. Pharm. Sci. 4, 91–97 (2014). https://doi.org/10.7324/JAPS.2014.40818
Daley, O. O. et al. Assessment of breadfruit (Artocarpus altilis, (parkinson) fosberg) cultivars for resistant starch, dietary fibre and energy density. African J. Food Agric. Nutr. Dev. 19, 15060–15076 (2019). https://doi.org/10.18697/ajfand.87.18090
Safitri, A., Jahari, A. B. & Ernawati, F. Konsumsi Makanan Penduduk Indonesia Ditinjau dari Norma Gizi Seimbang (Food Consumption in Term of the Norm of Balanced Nutrition). J. Nutr. Food Res. 39, 87–94 (2017). https://doi.org/10.22435/pgm.v39i2.6971.87-94
USDA Foreign Agricultural Services. Government of Indonesia Orders the Importation of 2 MMT of Rice to Replenish Emergency Stocks. 2022–2024 (2023). Available from: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Government of Indonesia Orders the Importation of 2 MMT of Rice to Replenish Emergency Stocks_Jakarta_Indonesia_ID2023-0007.pdf
Statistics Indonesia. Weekly Average Consumption of Several Food Items Commodity per Capita, 2007-2019. Consumption and Ecpenditure 1 (2019). Available from: https://www.bps.go.id/statictable/2014/09/08/950/rata-rata-konsumsi-per-kapita-seminggu-beberapa-macam-bahan-makanan-penting-2007-2019.html
Kementrian Kesehatan Republik Indonesia. Laporan Provinsi Jawa Tengah Riskesdas 2018. Kementerian Kesehatan RI (2018).
International Diabetes Federation. Indonesia Diabetes report 2000 — 2045. International Diabetes Federation 1–2 (2021). Available from: https://diabetesatlas.org/data/en/country/94/id.html
Laura, C. et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials. BMJ 374, n1651 (2021). https://doi.org/10.1136/bmj.n1651
Zafar, M. I. et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am. J. Clin. Nutr. 110, 891–902 (2019). Available from: https://doi.org/10.1093/ajcn/nqz149
Noviasari, S., Assyifa, P. S. & Sulaiman, I. Chemical and sensory properties of analogue rice based on kimpul flour (Xanthosoma sagitifolium). IOP Conf. Ser. Earth Environ. Sci. 951, (2022). https://doi.org/10.1088/1755-1315/951/1/012019
Saragih, B., Rahmadi, A. & Novita, D. The effect of steaming duration on nutrition composition, glycemic index and load of analog rice from natural products east kalimantan. Int. J. Recent Sci. Res. 10, 31072–31075 (2019). https://doi.org/http://dx.doi.org/10.24327/ijrsr.2019.1002.3186
Nugraheni, M., Purwanti, S. & Ekawatiningsih, P. Chemical composition, glycaemic index, and antidiabetic property of analogue rice made from composite tubers, germinated legumes, and cereal flours. Int. Food Res. J. 29, 1304–1313 (2022). https://doi.org/10.47836/ifrj.29.6.07
Pricilla, M. & Hakim Nata Buana, E. O. G. Hypoglycemic Effects of Analog Rice Based from Arrowroot (Marantha arundinacea L.) and Cowpea (Vigna unguiculata L.) on Blood Sugar Level and Pancreas Histopathology of Diabetic Rat. J. Diabetes Metab. 11, 1–6 (2020). https://doi.org/10.35248/2155-6156.20.11.840
Santosa, H., Handayani, N. A., Fauzi, A. D. & Trisanto, A. Pembuatan Beras Analog Berbahan Dasar Tepung Sukun Termodifikasi Heat Moisture Treatment. J. Inov. Tek. Kim. 3, 37–45 (2018). https://doi.org/10.31942/inteka.v3i1.2124
Mehta, K. A., Quek, Y. C. R. & Henry, C. J. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front. Nutr. 10, (2023). https://doi.org/10.3389/fnut.2023.1156155
Kaihena, M., Ukratalo, A. M., Nindatu, M. & Birahy, D. C. Breadfruit Flour, Food to Lower Blood Sugar Levels in Mice Model Diabetes Mellitus. J. Heal. Sains 4, 99–108 (2023). https://doi.org/10.46799/jhs.v4i3.866
Kusumaningsih, T., Firdaus, M. & Juneasri, F. T. I. Physicochemical Characterization, Gelatinization Profile, and Proximate Analysis of Sweet Potato Starch (Ipomoea batatas L.) White, Yellow, and Purple. Molekul 17, 176–184 (2022). https://doi.org/10.20884/1.jm.2022.17.2.5186
Guo, Y., Huang, Z., Sang, D., Gao, Q. & Li, Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front. Bioeng. Biotechnol. 8, 1–28 (2020). https://doi.org/10.3389/fbioe.2020.575442
Tang, G. Y. et al. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients 9, 20–23 (2017). https://doi.org/10.3390/nu9080857
Winarti, S., Djajati, S., Hidayat, R. & Jilian, L. Karakteristik dan Aktivitas Antioksidan Beras Analog dari Tepung Komposit (Gadung, Jagung, Mocaf) dengan Penambahan Pewarna Angkak. J. Reka Pangan 12, 35–36 (2018). Retrieved from http://ejournal.upnjatim.ac.id/index.php/teknologi-pangan/article/view/1098/941
Lu, K., Chen, S., Lin, Y., Wu, H. & Chao, P. An antidiabetic nutraceutical combination of red yeast rice ( Monascus purpureus ), bitter gourd ( Momordica charantia ), and chromium alleviates dedifferentiation of pancreatic β cells in db/db mice. Food Sci. Nutr. 8, 6718–6726 (2020). https://doi.org/10.1002/fsn3.1966
Anggraeni, N., Sastro Darmanto, Y. & Riyadi, P. H. Pemanfaatan Nanokalsium Tulang Ikan Nila (Oreochromis niloticus) pada Beras Analog dari Berbagai Macam Ubi Jalar (Ipomoea batatas L.). J. Apl. Teknol. Pangan 5, 114–122 (2016). https://doi.org/10.17728/jatp.187
Zhang, K., Jia, X., Zhu, Z. & Xue, W. Physicochemical properties of rice analogs based on multi-level: influence of the interaction of extrusion parameters. Int. J. Food Prop. 23, 2033–2049 (2020). https://doi.org/10.1080/10942912.2020.1840389
Association of Official Analitical Chemist. Official Methods of Analysis of The Association of Official Analytical Chemist18th Edition. (AOAC International, 2005).
Melville, J. UC Berkeley College of Chemistry Bomb Calorimetry and Heat of Combustion. Phys. Chem. Lab. (2014).
Kurniasari, I., Kusnandar, F. & Budijanto, S. Karakteristik Fisik Beras Analog Instan Berbasis Tepung Jagung dengan Penambahan k-Karagenan dan Konjak. agriTECH 40, 64 (2020). https://doi.org/10.22146/agritech.47491
Wongsa, J., Rungsardthong, V., Uttapap, D., Lamsal, B. P. & Puttanlek, C. Effect of Extrusion Conditions, Monoglyceride and Gum Arabic Addition on Physical and Cooking Properties of Extruded Instant Rice. J. King Mongkut’s Univ. Technol. North Bangkok 10, 23–30 (2017). https://doi.org/10.14416/j.ijast.2017.02.006
Yogeshwari, R., Hemalatha, G., Vanniarajan, C., Saravanakumar, S. & Kavithapushpam, A. Development of Micronutrient Fortified Extruded Rice Analogues. Eur. J. Nutr. Food Saf. 9, 1–11 (2018). https://doi.org/10.9734/ejnfs/2019/44342
Rao, V., Swamy, G., Raja, S. & Wesley, J. Engineering Properties of Certain Minor Millet Grains Engineering Properties of Certain Minor Millet Grains. (2020). Retrieved from https://www.researchgate.net/publication/354381269_Engineering_Properties_of_Certain_Minor_Millet_Grains
Chau, C.-F. & Huang, Y.-L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 51, 2615–2618 (2003). https://doi.org/https://doi.org/10.1021/jf025919b
Risnasari, I., Karolina, R., Fathurrahman, Pulungan, I. H. & Handinata, O. Alat Universal Testing Machine (UTM) dan Pengoperasiannya. (2022). Retrieved from https://www.researchgate.net/publication/370940117
Badan Standardisasi Nasional. Standar Nasional Beras (SNI) 6128: 2020. Badan Standardisasi Nasional (2020).
Mahendradatta, M., Assa, E., Langkong, J., Tawali, A. B. & Nadhifa, D. G. Development of Analog Rice Made from Cassava and Banana with the Addition of Katuk Leaf (Sauropus androgynous L. Merr.) and Soy Lecithin for Lactating Women. Foods 13, 1438 (2024). https://doi.org/10.3390/foods13101438
Istifada, D. S., Swastawati, F. & Wijayanti, I. Pengaruh penambahan tepung ikan teri hitam (Stolephorus insularis) terhadap karakteristik kimia dan tekstur pizza base. J. Pengolah. Has. Perikan. Indones. 26, 229–240 (2023). https://doi.org/10.17844/jphpi.v26i2.44748
Seifi, M. R. & Alimardani, R. The Moisture Content Effect on Some Physical and Mechanical Properties of Corn (Sc 704). J. Agric. Sci. 2, 124–134 (2010). https://doi.org/10.5539/jas.v2n4p125
Badan Standardisasi Nasional. Standar Nasional Tepung Ikan untuk Pakan (SNI) 2715:2013. (2013).
Darmanto, Y. S., Kurniasih, R. A., Romadhon, R., Riyadi, P. H. & Anggraeni, N. Characteristic of analog rice made from arrowroot (Maranta arundinacease) and seaweed (Gracilaria verrucosa) flour fortified with fish collagen. Food Res. 6, 370–379 (2022). https://doi.org/10.26656/fr.2017.6(5).473
Asgar, A., Musaddad, D., Rahayu, S. & Levianny, P. S. Effect of Temperature and Drying Time on Chemical, physical and Organoleptic Characteristics of Dry Winged Beans. IOP Conf. Ser. Earth Environ. Sci. 1024, 012004 (2022). https://doi.org/10.1088/1755-1315/1024/1/012004
Swastawati, F., Riyadi, P. H., Sulistyaningrum, H., Resky, S. & Suharto, S. Comparison of macro nutritional value, dissolved protein, amino acids and minerals of fresh and crispy-product of anchovy (Stolephorus commersonnii). Syst. Rev. Pharm. 11, 424–430 (2020). https://doi.org/10.31838/srp.2020.9.60
Probosari, E. Pengaruh Protein Diet Terhadap Indeks Glikemik. J. Nutr. Heal. 7, 5–10 (2019). Retrieved from https://ejournal.undip.ac.id/index.php/actanutrica/article/view/21944/14658
Sankar, T. V. et al. Chemical composition and nutritional value of Anchovy (Stolephorus commersonii) caught from Kerala coast, India. Eur. J. Exp. Biol. 3, 85–89 (2013).
Fanny, L., Rahayu, C. & Pakhri, A. Daya Terima Dan Kandungan Zat Gizi Mikro Serabi Yang Diperkaya Tepung Tempe Dan Tepung Ikan Teri (Stolephorus sp). Media Gizi Pangan 26, 190 (2019). https://doi.org/10.32382/mgp.v26i2.1070
Yuan, Z. et al. Impact of Heating Temperature and Fatty Acid Type on the Formation of Lipid Oxidation Products During Thermal Processing. Front. Nutr. 9, 1–10 (2022). https://doi.org/10.3389/fnut.2022.913297
Singh, B., Sharma, C. & Sharma, S. Fundamentals of extrusion processing. In: Novel Food Processing Technologies. Nov. Food Process. Technol. 1–45 (2017).
Sukamto, S. & Patria, D. G. The utilization of flour made of the non-milled rice as analog rice ingredients. Food Res. 4, 1427–1434 (2020). https://doi.org/10.26656/fr.2017.4(5).108
Eke-Ejiofor, J., Friday, U. . & N.L, A. Glycemic Indices, Vitamins of Flour and Sensory Properties of Stiff Dough (Swallow) from Processed, Ripe and Unripe Breadfruits (Artocarpus altilis). Am. J. Food Sci. Technol. 11, 49–56 (2023). https://doi.org/10.12691/ajfst-11-2-4 (2023).
Giri, N. A. & Sakhale, B. K. Effect of protein enrichment on quality characteristics and glycemic index of gluten free sweet potato (Ipomoea batatas L.) spaghetti. J. Food Sci. Technol. 59, 2410–2419 (2022). https://doi.org/10.1007/s13197-021-05257-4
Karthik, K. et al. Personalized Kodo Millet Rice Analogue (KMRA): Formulation, nutritional evaluation, and optimization. Futur. Foods 10, 100389 (2024). https://doi.org/10.1016/j.fufo.2024.100389
Pramono, Y. B., Nurwantoro, Handayani, D., Mulyani, S. & Hari Wibowo, C. Physical, chemical, stickiness and organoleptic characteristics of analog white sweet potato rice with the addition of pumpkin flours. IOP Conf. Ser. Earth Environ. Sci. 803, 012039 (2021). https://doi.org/10.1088/1755-1315/803/1/012039
Noviasari, S., Widara, S. S. & Budijanto, S. Analogue Rice as The Vehicle of Public Nutrition Diversity. J. Kesehat. Masy. 13, 18–27 (2017). https://doi.org/10.15294/kemas.v13i1.8284
Budi, F. S., Hariyadi, P., Budijanto, S. & Syah, D. Kristalinitas Dan Kekerasan Beras Analog Yang Dihasilkan Dari Proses Ekstrusi Panas Tepung Jagung. J. Teknol. dan Ind. Pangan 28, 46–54 (2017). https://doi.org/10.6066/jtip.2017.28.1.46
Sumardiono, S., Pudjihastuti, I., Supriyo, E. & Amalia, R. Physico-Chemical Properties of Calcium-Fortified Analog Rice from Composite Flour (Cassava, Corn, and Snakehead Fish) for Osteoporosis Prevention. J. Vocat. Stud. Appl. Res. 2, 10–15 (2020). Retrieved from http://dx.doi.org/10.14710/jvsar.v2i2.8062
Qiu, Y. et al. An understanding of the changes in water holding capacity of rehydrated shiitake mushroom (Lentinula edodes) from cell wall, cell membrane and protein. Food Chem. 351, 129230 (2021). https://doi.org/10.1016/j.foodchem.2021.129230
Gao, Y., Sun, Y., Sun, Y. & Jin, T. Extrusion Modification: Effect of Extrusion on the Functional Properties and Structure of Rice Protein. procesess 38, 32–37 (2022). https://doi.org/10.13652/j.issn.1003-5788.2022.01.004
Copyright (c) 2025 Amerta Nutrition

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
AMERTA NUTR by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).
4. The Creative Commons Attribution Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violation.