RAPID AND SPESIFIC DETECTION OF MYCOBACTERIUM TUBERCULOSIS USING POLYMERASE CHAIN REACTION

Anita Kurniati, Desak Nyoman Surya Suameitra Dewi, Ni Nyoman Purwani

= http://dx.doi.org/10.20473/jvhs.V3.I2.2019.83-88
Abstract views = 1365 times | downloads = 6017 times

Abstract


Background: Tuberculosis (TB) is one of the major causes of health burden worldwide, especially in lower middle-income countries. TB is caused by Mycobacterium tuberculosis (MTB) and characterized by severe condition incuding coughing and fever. Purpose: To review the current methods for detection of TB using Polymerase Chain Reaction (PCR). Review: several studies have been done to give valuable insight into TB transmission, diagnosis, and treatment, however research  is constantly  needed  to decrease the incidence of eradicate TB. This infectious disease still give big health problem in all over the world by being second in causing high mortality rates after HIV/AIDS.  A specific, sensitive, rapid and cheap method for TB and other mycobacteria diagnosis in clinical specimen is a desperate needed in the laboratory diagnosis and hence management of tuberculosis. PCR as one of nucleic acid amplification assays have revolutionized MTB detection. Since it was first invented in fifteen years ago, it’s been through many developments. Conclusion: PCR  is one of the most specific and sensitive method currently available for TB diagnosis that can also detect in in all types of specimens obtained from TB patients.


Keywords


Tuberculosis; Mycobacterium tuberculosis; HIV/AIDS; Rapid test; PCR

Full Text:

PDF

References


Amin, I., Idrees, M., Awan, Z., Shahid, M., Afzal, S., Hussain, A. 2011. PCR could be a method of choice for identification of both pulmonary and extrapulmonary tuberkulosis. BMC Res Notes Vol 4. Pp. 332.

Brisson-Noel, A., D. Lecossier, X. Nassif, B. Giquel, V. Levy-Frebault, A. J. Hance. 1989. Rapid diagnosis of tuberkulosis by amplification of mycobacterial DNA in clinical samples. Lancet Vol. 334(8671). Pp. 1069–1072.

Chen, J. M., Pojer, F., Blasco, B., Cole, S. T. 2010. Towards anti-virulence drugs targeting esx-1 mediated pathogenesis of Mycobacterium tuberculosis. Drug Discovery Today: Disease Mechanisms; Mycobacterial infections Vol. 7(1). Pp. 25-31

Cho, W.H., Won, E.J., Choi, H.J., Kee, S.J., Shin, J.H., Ryang, D.W., et al. 2015. Comparison of AdvanSure TB/NTM PCR and COBAS TaqMan MTB PCR for detection of mycobacterium tuberkulosis complex in routine clinical practice. Ann Lab Med. Vol. 35. Pp. 356–361.

Comas, I., Gagneux, S. 2009. The past and future of tuberkulosis research. PLoS Pathog. Available from: https://doi.org/10.1371/journal.ppat.1000600. Accessed: November 2014

Desak, T. N., Soedarsono, Kurniati, A., Mertaniasih, N. M. 2017. The specific DNA region of esxA gene for the target of PCR to determine Mycobacterium tuberculosis accurately. Bali Medical Journal. Vol. 6(1). Pp. 150-155.

Eisenach, K. D., Cave, M. D., Bates, J. H., Crawford, J. T. 1990. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberkulosis. J. Infect. Dis. Vol. 161(5). Pp. 977–981.

Engström, A. 2016. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistanT Mycobacterium tuberkulosis. Infect Dis (Lond). Vol. 48. Pp. 1-17.

Forbes, B. A., Hicks, K. E. 1993. Direct detection of Mycobacterium tuberkulosis in respiratory specimens in a clinical laboratory by polymerase chain reaction. J. Clin. Microbiol. Vol. 31(7). Pp. 1688–1694.

Forrellad, M. A., Klepp, L. I., Gioffré, A., Sabio, y García, J., Morbidoni, H. R., de la Paz, Santangelo, M., Cataldi, A. A., Bigi, F. 2013. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. Vol. 4(1). Pp. 3-66.

Frieden, T. R., Fujiwara, P. I., Washko, R. M., Hamburg, M. A. 1995. Tuberkulosis in New York City—turning the tide. N. Engl. J. Med. Vol. 333(4). Pp. 229–233.

Garibyan, L., Avashia, N. 2013. Polymerase chain reaction. J. Investigative Dermatology Vol. 133(3). Pp. 1-4.

Godbhane, R., Raoult, D., Drancourt, M. 2014. Dramatic reduction of culture time of Mycobacterium tuberkulosis. Sci Rep. Vol. 4. Pp. 4236.

Goldman, L., Schafer, A. I. 2011. Tuberkulosis: disease overview. In: Goldman L, Schafer AI, editors. Goldman's cecil medicine: expert consult premium edition 24th ed. St. Louis (MO): Saunders Elsevier.

Horita, N., Yamamoto, M., Sato, T., Tsukahara, T., Nagakura, H., Tashiro, K., Shibata, Y., Watanabe, H., Nagai, K., Nakashima, K., Ushio, R., Ikeda, M., Sakamaki, K., Yoshiyama, T., Kaneko, T. 2015. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberkulosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep. Vol. 5. Pp. 18113.

Kabir, S., Uddina, M.K.M., Chistib, M.J., Fannanac, T., Haqued, M.E., Uddine, M.R., MSayera Banua, M.S., Ahmed, T. 2018. Role of PCR method using IS6110 primer in detecting Mycobacterium tuberkulosis among the clinically diagnosed childhood tuberkulosis patients at an urban hospital in Dhaka, Bangladesh. International Journal of Infectious Disease Vol. 68. Pp. 108-114.

Kaushal, D., B., G. Schroeder, S., Tyagi, T. Yoshimatsu, C. Scott, C. Ko, L. Carpenter, J. Mehrotra, Y. C. Manabe, R. D. Fleischmann, and W. R. Bishai. 2002. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberkulosis mutant lacking alternative sigma factor, SigH. Proc. Natl. Acad. Sci. USA Vol. 99(12). Pp. 8330–8335.

Korotkova, N., Piton, J., Wagner, J. M., Boy-Röttger, S., Aleksandre, J., Evans, T. J, Cole, S. T, Pojer, F., Korotkov, K. V. 2015. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. Journal of Structural Biology. Vol. 191(2). Pp. 236-244.

Lathigra, R., Zhang, Y., Hill, M., Garcia, M-J., Jackett, P. S., Ivanyi, J. 1996. Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberkulosis. Res. Microbiol. Vol. 147(4). Pp. 237–249.

Lisdawati, V., Puspandari, N., Rif'ati, L., Soekarno, T., Melatiwati, M., Syamsidar, K., Ratnasari, L., Izzatun, N., Parwati, I. 2015. Molecular epidemiology study of Mycobacterium tuberkulosis and its susceptibility to anti-tuberkulosis drugs in Indonesia. BMC Infect Dis. Vol. 15. Pp. 366.

Nurwidya, F., Handayani, D., Burhan, E., Yunus, F. 2018. Molecular Diagnosis of Tuberkulosis. Chonnam Medical Journal Vol. 54(1). Pp. 1-9.

Pierre, C., Lecossier, D., Boussougnant, Y., Bocart, D., Joly, V., Yeni, P., Hance. A. J. 1991. Use of a reamplification protocol improves sensitivity of detection of Mycobacterium tuberkulosis in clinical samples by amplification of DNA. J. Clin. Microbiol. Vol. 29(4). Pp. 712–717.

Saboor, S. A., Johnson, N. M., McFadden, J. 1992. Detection of mycobacterial DNA in sarcoidosis and tuberkulosis with polymerase chain reaction. Lancet Vol. 339(8800). Pp. 1012–1015.

Schuller, M., Sloots, T. P., James, G. S., Halliday, C. L., Carter I. W.J. 2010 PCR for Clinical Microbiology an Australian and International Perspective. Springer Science+Business Media. New York.

Shankhar, P., Manjunath, N., Mohan, K. K., Shriniwas, Praasad, K., Behari, M., Ahuja. G. K. 1991. Rapid diagnosis of tuberkulosis meningitis by polymerase chain reaction. Lancet Vol. 337(8732). Pp. 5–7.

Singh, S., Gopinath, K., Shahdad, S., Kaur, M., Singh, B., Sharma, P. 2007. Nontuberculous mycobacterial infection in Indian AIDS patients detected by a novel set of ESAT-6 polymerase chain reaction primers. Japanese Journal of Infectious Disease. Vol. 60(1). Pp.14-18.

Singh, A., Kashyap, V. K. 2012. Specific and Rapid Detection of Mycobacterium tuberkulosis Complex in Clinical Samples by Polymerase Chain Reaction. Interdiscip Perspect Infect Dis. Vol. 2012. Id. 654694.

Singleton, P. 2000. DNA Methods in Clinical Microbiology. Springer Science+Business Media. Dordrecht.

Sjo¨bring, U., Mecklenburg, M., Andersen, A. B., Mio¨rner, H. 1990. Polymerase chain reaction for detection of Mycobacterium tuberkulosis. J. Clin. Microbiol. Vol. 29(10). Pp. 2200–2204.

Smith, I. 2003. Mycobacterium tuberkulosis Pathogenesis and Molecular Determinants of Virulence. American Society for Microbiology Vol. 16(3). Pp. 463-496

Solans, L., Aguiló, N., Samper, S., Pawlik, A., Frigui, W., Martín, C., Brosch, R., Gonzalo-Asensio, J. 2014. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Journal Infection and Immunity. Vol. 82(8). Pp. 3446-3456.

Teutschbein, J., Schumann, G., Möllmann, U., Grabley, S., Cole, S.T., Munder, T. 2009. A protein linkage map of the ESAT-6 secretion system 1(ESX-1) of Mycobacterium tuberculosis. Microbiological Resarch. Vol. 164. Pp. 253-259.

Theron, G., Peter, J., Calligaro, G., Meldau, R., Hanrahan, C., Khalfey, H., Brian Matinyenya, B., Muchinga,T., Smith, L., Pandie, S., Lenders,L., Patel, V., Mayosi, B.M., & Dheda, K. 2014. Determinants of PCR performance (Xpert MTB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from different body compartments. Available from: www.nature.com/scientificreports. Accessed: 20 October 2019

Uplekar, S., Heym, B., Friocourt, V., Rougemont, J., Cole, S. T. 2011. Comparative genomics of esx genes from clinical isolates of Mycobacterium tuberculosis provides evidence for gene conversion and epitope variation. Journal Infection and Immunity Vol. 79(10). Pp. 4042-4049.

Vinuesa, V., Borrás, R., Briones, M.L., Clari, M.A., Cresencio, V., Giménez, E., Muñoz, C., Oltra, R., Servera, E., Scheelje, T., Tornero, C., Navarro. D. 2014. Performance of a Highly Sensitive Mycobacterium tuberculosis Complex Real-Time PCR Assay for Diagnosis of Pulmonary Tuberculosis in a Low-Prevalence Setting: a Prospective Intervention Study. Journal of Clinical Microbiology Vol 56(5). Pp. 116-18.

WHO. 2016. Tuberkulosis Global Report. Available from: http://www.who.int/tb/Global_TB_Facts.pdf?ua=1. Accessed: 18 October 2016.

Yamamoto, M., Ushio,R., Watanabe, H., Tachibana, T., Masatsugu, Tanaka., Tomoyuki, Yokose, T., Tsukijie, J., Nakajima, H., Kaneko, T., 2017. Detection of Mycobacterium tuberkulosis-derived DNA in circulating cell-free DNA from a patient with disseminated infection using digital PCR. International Journal of Infectious Diseases Vol. 66. Pp. 80-82.

Yu, X., Xie, J. 2012. Roles and underlying mechanisms of ESAT-6 in the context of Mycobacterium tuberculosis–host interaction from a systems biology perspective. Cellular Signalling Vol. 24(9). Pp. 1841-1846.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Journal of Vocational Health Studies

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal is Indexed by: 

                 .


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.