Crafting Paediatric Immunity: The Science of Prebiotic, Probiotic, and Synbiotic Roles in Child Health
Membangun Kekebalan Tubuh: Pengetahuan tentang Peran Prebiotik dan Probiotik dalam Kesehatan Anak

Background: The gut microbiota affects Children's immune system, which interacts with the immune system to support a healthy body. Prebiotics and probiotics, alongside their combination in the form of synbiotics, have demonstrated significant potential for enhancing immune health in children.
Objectives: This article aims to review the role of prebiotics, probiotics, and synbiotics in supporting pediatric immune health by discusses their mechanisms of action, clinical evidence of benefits, and their impact on infection risk reduction, gut health enhancement, and improved vaccine effectiveness.
Methods: A comprehensive literature review was conducted by utilizing recent studies and clinical trials on the effects of prebiotics, probiotics, and synbiotics on paediatric immune health.
Discussions: Prebiotics, probiotics, and synbiotics play a crucial role in supporting paediatric immune health by optimizing gut microbiota balance and facilitating the production of beneficial metabolites, such as short-chain fatty acids (SCFAs), which subsequently strengthen gut barrier function and modulate immune responses.
Prebiotics provide essential nutrients for beneficial bacteria, probiotics directly interact with immune cells, and synbiotics synergistically combine these benefits, demonstrating effectiveness in reducing infections, enhancing vaccine responses, and preventing allergies. Clinical studies highlight their potential to improve gastrointestinal health, reduce inflammation, and strengthen immunity, emphasizing their importance as safe and effective interventions for children's health.
Conclusions: Prebiotics, probiotics, and synbiotics demonstrate significant potential in supporting children's immune health through mechanisms that improve gut microbiota balance and enhance immune function. Despite encouraging findings, additional research is essential to determine optimal dosages, long-term safety, and individualized strategies for their clinical application.
Fragkou, P. C., Karaviti, D., Zemlin, M. & Skevaki, C. Impact of Early Life Nutrition on Children’s Immune System and Noncommunicable Diseases Through Its Effects on the Bacterial Microbiome, Virome and Mycobiome. Frontiers in Immunol 12, 644269 (2021). https://doi.org/10.3389/fimmu.2021.644269
Buonocore, G. Microbiota and gut immunity in infants and young children. Global Pediatrics 9, 100202 (2024). https://doi.org/10.1016/j.gpeds.2024.100202
Xenopoulou, E., Kontele, I., Sergentanis, T. N., Grammatikopoulou, M. G., Tzoutzou, M., Kotrokois, K., Tsitsika, A. & Vassilakou, T. Biotics and Children’s and Adolescents’ Health: A Narrative Review. Children 11, 329 (2024). https://doi.org/10.3390/children11030329
Ignatova, I., Arsov, A., Petrova, P. & Petrov, K. Prebiotic Effects of α- and β-Galactooligosaccharides: The Structure-Function Relation. Molecules 2025, Vol. 30, Page 803 30, 803 (2025). https://doi.org/10.3390/molecules30040803
Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E. & Rotondo, J. C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 12, 184 (2023). https://doi.org/10.3390/cells12010184
Darma, A., Dewi, D. K., Chandra, D. N., Basrowi, R. W., Khoe, L. C., Pratiwi, D. & Sundjaya, T. The Role of Prebiotic, Probiotic, and Synbiotic in Gut Microbiota and Gut Permeability in Children Affected by Air Pollution. Current Nutrition & Food Science 20, 1272–1281 (2024). https://doi.org/10.2174/0115734013284557240108081832
Li, X., Hu, S., Yin, J., Peng, X., King, L., Li, L., Xu, Z., Zhou, L., Peng, Z., Ze, X., Zhang, X., Hou, Q., Shan, Z. & Liu, L. Effect of synbiotic supplementation on immune parameters and gut microbiota in healthy adults: a double-blind randomized controlled trial. Gut Microbes 15, 2247025 (2023). https://doi.org/10.1080/19490976.2023.2247025
Okolie, M. C., Edo, G. I., Ainyanbhor, I. E., Jikah, A. N., Akpoghelie, P. O., Yousif, E., Zainulabdeen, K., Isoje, E. F., Igbuku, U. A., Orogu, J. O., Owheruo, J. O., Essaghah, A. E. A. & Umar, H. Gut microbiota and immunity in health and diseases: a review. Proceedings of the Indian National Science Academy 2024 1–18 (2024). doi:10.1007/S43538-024-00355-1
Mpakosi, A., Sokou, R., Theodoraki, M., Iacovidou, N., Cholevas, V., Tsantes, A. G., Liakou, A. I., Drogari-Apiranthitou, M. & Kaliouli-Antonopoulou, C. The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity—A Narrative Review. Diagnostics 2025, Vol. 15, Page 413 15, 413 (2025). https://doi.org/10.3390/diagnostics15040413
Duan, H., Wang, L. J., Huangfu, M. & Li, H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomedicine & Pharmacotherapy 165, 115276 (2023). https://doi.org/10.1016/j.biopha.2023.115276
Dera, N., Kosińska-Kaczyńska, K., Żeber-Lubecka, N., Brawura-Biskupski-Samaha, R., Massalska, D., Szymusik, I., Dera, K. & Ciebiera, M. Impact of Early-Life Microbiota on Immune System Development and Allergic Disorders. Biomedicines 13, 121 (2025). https://doi.org/10.3390/biomedicines13010121
Yuan, C., He, Y., Xie, K., Feng, L., Gao, S. & Cai, L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Frontiers in Cellular and Infection Microbiology 13, 1282431 (2023). https://doi.org/10.3389/fcimb.2023.1282431
Kasarello, K., Cudnoch-Jedrzejewska, A. & Czarzasta, K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Frontiers in Microbiology 14, 1118529 (2023). https://doi.org/10.3389/fmicb.2023.1118529
Pantazi, A. C., Mihai, C. M., Balasa, A. L., Chisnoiu, T., Lupu, A., Frecus, C. E., Mihai, L., Ungureanu, A., Kassim, M. A. K., Andrusca, A., Nicolae, M., Cuzic, V., Lupu, V. V. & Cambrea, S. C. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 15, 2529 (2023). https://doi.org/10.3390/nu15112529
Yao, Y., Cai, X., Ye, Y., Wang, F., Chen, F. & Zheng, C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology 12, 708472 (2021). https://doi.org/10.3389/fimmu.2021.708472
Kim, Y. T. & Mills, D. A. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Science and Biotechnology 2024 33:9 33, 2065–2080 (2024). https://doi.org/10.1007/s10068-024-01620-1
Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J. & Knippels, L. M. J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 13, 886 (2021). https://doi.org/10.3390/nu13030886
Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Research 2020 30:6 30, 492–506 (2020). https://doi.org/10.1038/s41422-020-0332-7
Sadeghpour Heravi, F. Gut Microbiota and Autoimmune Diseases: Mechanisms, Treatment, Challenges, and Future Recommendations. Current Clinical Microbiology Report 11, 18–33 (2024). https://doi.org/10.1007/s40588-023-00213-6
Zhang, R., Ding, N., Feng, X. & Liao, W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Frontiers in Immunology 16, 1529958 (2025). https://doi.org/10.3389/fimmu.2025.1529958
Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunology 13, 183–189 (2020). https://doi.org/10.1038/s41385-020-0257-y
Fadlyana, E., Soemarko, D. S., Endaryanto, A., Haryanto, B., Darma, A., Dewi, D. K., Chandra, D. N., Hartono, B., Buftheim, S., Wasito, E., Sundjaya, T. & Basrowi, R. W. The Impact of Air Pollution on Gut Microbiota and Children’s Health: An Expert Consensus. Children 9, 765 (2022). https://doi.org/10.3390/children9060765
Endaryanto, A., Darma, A., Sundjaya, T., Masita, B. M. & Basrowi, R. W. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. Children 10, 1067 (2023). https://doi.org/10.3390/children10061067
Bugya, Z., Prechl, J., Szénási, T., Nemes, É., Bácsi, A. & Koncz, G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines 9, 174 (2021). https://doi.org/10.3390/vaccines9020174
Ney, L. M., Wipplinger, M., Grossmann, M., Engert, N., Wegner, V. D. & Mosig, A. S. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biololgy 13, 230014 (2023). https://doi.org/10.1098/rsob.230014
McBride, D. A., Dorn, N. C., Yao, M., Johnson, W. T., Wang, W., Bottini, N. & Shah, N. J. Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Delivery and Translational Research 13, 1912–1924 (2023). https://doi.org/10.1007/s13346-022-01284-6
Liu, X. F., Shao, J. H., Liao, Y. T., Wang, L. N., Jia, Y., Dong, P. J., Liu, Z. Z., He, D. D., Li, C. & Zhang, X. Regulation of short-chain fatty acids in the immune system. Frontiers in Immunology 14, 1186892 (2023). https://doi.org/10.3389/fimmu.2023.1186892
Liu, H., Lu, H., Wang, Y., Yu, C., He, Z. & Dong, H. Unlocking the power of short-chain fatty acids in ameliorating intestinal mucosal immunity: a new porcine nutritional approach. Frontiers in Cellular and Infection Microbiology 14, 1449030 (2024). https://doi.org/10.3389/fcimb.2024.1449030
Hsu, C. Y., Khachatryan, L. G., Younis, N. K., Mustafa, M. A., Ahmad, N., Athab, Z. H., Polyanskaya, A. V., Kasanave, E. V., Mirzaei, R. & Karampoor, S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Frontiers in Microbiology 15, 1456793 (2024). https://doi.org/10.3389/fmicb.2024.1456793
Ji, J., Jin, W., Liu, S. J., Jiao, Z. & Li, X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 4, e420 (2023). https://doi.org/10.1002/mco2.420
Holmes, Z. C., Villa, M. M., Durand, H. K., Jiang, S., Dallow, E. P., Petrone, B. L., Silverman, J. D., Lin, P. H. & David, L. A. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 10, (2022). https://doi.org/10.1186/s40168-022-01307-x
Bevilacqua, A., Campaniello, D., Speranza, B., Racioppo, A., Sinigaglia, M. & Corbo, M. R. An Update on Prebiotics and on Their Health Effects. Foods 13, 446 (2024). https://doi.org/10.3390/foods13030446
Kaewarsar, E., Chaiyasut, C., Lailerd, N., Makhamrueang, N., Peerajan, S. & Sirilun, S. Optimization of Mixed Inulin, Fructooligosaccharides, and Galactooligosaccharides as Prebiotics for Stimulation of Probiotics Growth and Function. Foods 2023, Vol. 12, Page 1591 12, 1591 (2023). https://doi.org/10.3390/foods12081591
Yoo, S., Jung, S. C., Kwak, K. & Kim, J. S. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. International Journal of Molecular Sciences 2024, Vol. 25, Page 4834 25, 4834 (2024). https://doi.org/10.3390/ijms25094834
Pujari, R. & Banerjee, G. Impact of prebiotics on immune response: from the bench to the clinic. Immunology and Cell Biology 99, 255–273 (2021). https://doi.org/10.1111/imcb.12409
Gavzy, S. J., Kensiski, A., Lee, Z. L., Mongodin, E. F., Ma, B. & Bromberg, J. S. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 15, 2291164 (2023). https://doi.org/10.1080/19490976.2023.2291164
Simon, E., Călinoiu, L. F., Mitrea, L. & Vodnar, D. C. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 13, 2112 (2021). https://doi.org/10.3390/nu13062112
Pujari, R. & Banerjee, G. Impact of prebiotics on immune response: from the bench to the clinic. Immunology and Cell Biology 99, 255–273 (2021). https://doi.org/10.1111/imcb.12409
Selvamani, S., Kapoor, N., Ajmera, A., El Enshasy, H. A., Dailin, D. J., Sukmawati, D., Abomoelak, M., Nurjayadi, M. & Abomoelak, B. Prebiotics in New-Born and Children’s Health. Microorganisms 11, 2453 (2023). https://doi.org/10.3390/microorganisms11102453
Mirzaei, R., Bouzari, B., Hosseini-Fard, S. R., Mazaheri, M., Ahmadyousefi, Y., Abdi, M., Jalalifar, S., Karimitabar, Z., Teimoori, A., Keyvani, H., Zamani, F., Yousefimashouf, R. & Karampoor, S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine & Pharmacotherapy 139, 111661 (2021). https://doi.org/10.1016/j.biopha.2021.111661
Ma, J., Piao, X., Mahfuz, S., Long, S. & Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition 9, 159–174 (2022). https://doi.org/10.1016/j.aninu.2022.03.003
Facchin, S., Bertin, L., Bonazzi, E., Lorenzon, G., De Barba, C., Barberio, B., Zingone, F., Maniero, D., Scarpa, M., Ruffolo, C., Angriman, I. & Savarino, E. V. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life 14, 559 (2024). https://doi.org/10.3390/life14050559
Fusco, W., Lorenzo, M. B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M. C., Gasbarrini, A., Collado, M. C., Cammarota, G. & Ianiro, G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 15, 2211 (2023). https://doi.org/10.3390/nu15092211
Du, Y., He, C., An, Y., Huang, Y., Zhang, H., Fu, W., Wang, M., Shan, Z., Xie, J., Yang, Y. & Zhao, B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. International Journal of Molecular Sciences 2024, Vol. 25, Page 7379 25, 7379 (2024). https://doi.org/10.3390/ijms25137379
Zhou, P., Chen, C., Patil, S. & Dong, S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Frontiers in Nutrition 11, (2024). https://doi.org/10.3389/fnut.2024.1355542
Liu, Y., Wang, J. & Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Frontiers in Nutrition 8, 634897 (2022). https://doi.org/10.3389/fnut.2021.634897
Goswami, T. K., Singh, M., Dhawan, M., Mitra, S., Emran, T. Bin, Rabaan, A. A., Mutair, A. Al, Alawi, Z. Al, Alhumaid, S. & Dhama, K. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders – Advances and challenges. Human Vaccines and Immunotherapheutics 18, 2035117 (2022). https://doi.org/10.1080/21645515.2022.2035117
Pedrosa, L. de F., de Vos, P. & Fabi, J. P. From Structure to Function: How Prebiotic Diversity Shapes Gut Integrity and Immune Balance. Nutrients 2024, Vol. 16, Page 4286 16, 4286 (2024). https://doi.org/10.3390/nu16244286
Gulliver, E. L., Young, R. B., Chonwerawong, M., D’Adamo, G. L., Thomason, T., Widdop, J. T., Rutten, E. L., Rossetto Marcelino, V., Bryant, R. V., Costello, S. P., O’Brien, C. L., Hold, G. L., Giles, E. M. & Forster, S. C. Review article: the future of microbiome-based therapeutics. Alimentary Pharmacology & Therapeutics 56, 192–208 (2022). https://doi.org/10.1111/apt.17049
Dewi, D. K., Adi, N. P., Prayogo, A., Sundjaya, T., Wasito, E., Kekalih, A., Basrowi, R. W. & Jo, J. Regular Consumption of Fortified Growing-up Milk Attenuates Upper Respiratory Tract Infection among Young Children in Indonesia: A Retrospective Cohort Study. Open Public Health Journal 17, (2024). https://doi.org/10.2174/0118749445290351240520104252
Dou, Y., Yu, X., Luo, Y., Chen, B., Ma, D. & Zhu, J. Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 14, 3298 (2022). https://doi.org/10.3390/nu14163298
Deng, X., Liang, C., Zhou, L., Shang, X., Hui, X., Hou, L., Wang, Y., Liu, W., Liang, S., Yao, L., Yang, K. & Li, X. Network meta-analysis of probiotics, prebiotics, and synbiotics for the treatment of chronic constipation in adults. European Journal of Nutitionr 63, 1999–2010 (2024). https://doi.org/10.1007/s00394-023-03241-7
Wongkrasant, P., Pongkorpsakol, P., Ariyadamrongkwan, J., Meesomboon, R., Satitsri, S., Pichyangkura, R., Barrett, K. E. & Muanprasat, C. A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomedicine & Pharmacotherapy 129, 110415 (2020). https://doi.org/10.1016/j.biopha.2020.110415
Liang, H., Zhang, Y., Miao, Z., Cheng, R., Jiang, F., Ze, X., Shen, X. & He, F. Anti-allergic effects of two potential probiotic strains isolated from infant feces in China. Journal of Functional Foods 92, 105070 (2022). https://doi.org/10.1016/j.jff.2022.105070
Carlini, V., Noonan, D. M., Abdalalem, E., Goletti, D., Sansone, C., Calabrone, L. & Albini, A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Frontiers in Immunology 14, (2023). https://doi.org/10.3389/fimmu.2023.1223456
Mann, E. R., Lam, Y. K. & Uhlig, H. H. Short-chain fatty acids: linking diet, the microbiome and immunity. Nature Reviews Immunology 24, 577–595 (2024). https://doi.org/10.1038/s41577-024-01014-8
Ma, X., Shin, Y. J., Jang, H. M., Joo, M. K., Yoo, J. W. & Kim, D. H. Lactobacillus rhamnosus and Bifidobacterium longum alleviate colitis and cognitive impairment in mice by regulating IFN-γ to IL-10 and TNF-α to IL-10 expression ratios. Scientific Reports 11, 20659 (2021). https://doi.org/10.1038/s41598-021-00244-2
Mei, L., Chen, Y., Wang, J., Lu, J., Zhao, J., Zhang, H., Wang, G. & Chen, W. Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner. Foods 11, 1229 (2022). https://doi.org/10.3390/foods11091229
Ramos, A. C. S., Oliveira, L. M., Santos, Y. L. D. C. O., Dantas, M. C. S., Walker, C. I. B., Faria, A. M. C., Bueno, L. L., Dolabella, S. S. & Fujiwara, R. T. The role of IgA in gastrointestinal helminthiasis: A systematic review. Immunology Letter 249, 12–22 (2022). https://doi.org/10.1016/j.imlet.2022.03.003
Takeuchi, T. & Ohno, H. IgA in human health and diseases: Potential regulator of commensal microbiota. Frontiers in Immunology 13, (2022). https://doi.org/10.3389/fimmu.2022.1001234
Lisicka, W., Earley, Z., Sifakis, J., Mattingly, J., Erickson, S., Riesenfeld, S., Cyster, J., Jabri, B. & Bendelac, A. IgA controls enteric virus colonization to preserve intestinal immune homeostasis. The Journal of Immunology 212, 0392_5110-0392_5110 (2024). https://doi.org/10.4049/jimmunol.212.supp.0392.5110
Zheng, J., Ahmad, A. A., Yang, Y., Liang, Z., Shen, W., Feng, M., Shen, J., Lan, X. & Ding, X. Lactobacillus rhamnosus CY12 Enhances Intestinal Barrier Function by Regulating Tight Junction Protein Expression, Oxidative Stress, and Inflammation Response in Lipopolysaccharide-Induced Caco-2 Cells. International Journal of Molecular Science 23, 11162 (2022). induced Caco-2 cells. International Journal of Molecular Sciences 23, 11162 (2022). https://doi.org/10.3390/ijms231911162
López-Almada, G., Mejía-León, M. E. & Salazar-López, N. J. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024, Vol. 13, Page 3529 13, 3529 (2024). https://doi.org/10.3390/foods13223529
Matar, A., Damianos, J. A., Jencks, K. J. & Camilleri, M. Intestinal Barrier Impairment, Preservation, and Repair: An Update. Nutrients 16, 3494 (2024). https://doi.org/10.3390/nu16203494
Li, W., Zeng, Y., Zhong, J., Hu, Y., Xiong, X., Zhou, Y. & Fu, L. Probiotics Exert Gut Immunomodulatory Effects by Regulating the Expression of Host miRNAs. Probiotics and Antimicrobial Proteins 17, 557-568 (2025). Doi:10.1007/S12602-024-10443-9
Virk, M. S., Virk, M. A., He, Y., Tufail, T., Gul, M., Qayum, A., Rehman, A., Rashid, A., Ekumah, J. N., Han, X., Wang, J. & Ren, X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 16, 546 (2024). https://doi.org/10.3390/nu16040546
Huang, R., Xing, H. Y., Liu, H. J., Chen, Z. F. & Tang, B. B. Efficacy of probiotics in the treatment of acute diarrhea in children: a systematic review and meta-analysis of clinical trials. Translational Pediatric 10, 3248-3260 (2021). https://doi.org/10.21037/tp-21-511
Zhao, Y., Dong, B. R. & Hao, Q. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Systematic Reviews 2022, CD006895 (2022). https://doi.org/10.1002/14651858.CD006895.pub4
Voigt, J. & Lele, M. Lactobacillus rhamnosus Used in the Perinatal Period for the Prevention of Atopic Dermatitis in Infants: A Systematic Review and Meta-Analysis of Randomized Trials. American Journal of Clinical Dermatology 23, 801-811 (2022). https://doi.org/10.1007/s40257-022-00723-x
Pirker, A. L. & Vogl, T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. Frontiers in Allergy 5, 1439303 (2024). https://doi.org/10.3389/falgy.2024.1439303
Peng, Y., Ma, Y., Luo, Z., Jiang, Y., Xu, Z. & Yu, R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Frontiers in Cellular and Infection Microbiology 13, 1254198 (2023). https://doi.org/10.3389/fcimb.2023.1254198
Dargenio, V. N., Cristofori, F., Brindicci, V. F., Schettini, F., Dargenio, C., Castellaneta, S. P., Iannone, A. & Francavilla, R. Impact of Bifidobacterium longum Subspecies infantis on Pediatric Gut Health and Nutrition: Current Evidence and Future Directions. Nutrients 16, 3510 (2024). https://doi.org/10.3390/nu16203510
Liu, Z., Cao, Q., Wang, W., Wang, B., Yang, Y., Xian, C. J., Li, T. & Zhai, Y. The Impact of Lactobacillus reuteri on Oral and Systemic Health: A Comprehensive Review of Recent Research. Microorganisms 2025 13, 45 (2024). https://doi.org/10.3390/microorganisms13010045
Dargenio, V. N., Cristofori, F., Brindicci, V. F., Schettini, F., Dargenio, C., Castellaneta, S. P., Iannone, A. & Francavilla, R. Impact of Bifidobacterium longum Subspecies infantis on Pediatric Gut Health and Nutrition: Current Evidence and Future Directions. Nutrients 16, 3510 (2024). https://doi.org/10.3390/nu16203510
Jeon, H. J., Seo, S., Lee, H. S., Kim, S. H., Park, J., Kim, S. E., Jung, S. A. & Moon, C. M. DOP032 Extracellular vesicles from Bifidobacterium longum Subspecies infantis attenuate intestinal inflammation via macrophage polarization. Journal of Crohn’s and Colitis 19, i144–i145 (2025). https://doi.org/10.1093/ecco-jcc/jjae190.0071
Yadav, M. K., Kumari, I., Singh, B., Sharma, K. K. & Tiwari, S. K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Applied Microbiology and Biotechnology 106, 505 (2022). https://doi.org/10.1007/s00253-021-11646-8
Phavichitr, N., Wang, S., Chomto, S., Tantibhaedhyangkul, R., Kakourou, A., Intarakhao, S., Jongpiputvanich, S., Wongteerasut, A., Ben-Amor, K., Martin, R., Ting, S., Suteerojntrakool, O., Visuthranukul, C., Piriyanon, P., Roeselers, G. & Knol, J. Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study. Scientific Reports 11, 3534 (2021). https://doi.org/10.1038/s41598-021-83009-2
You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C. & Huang, C. The promotion mechanism of prebiotics for probiotics: A review. Frontiers in Nutrition 9, 1000517 (2022). https://doi.org/10.3389/fnut.2022.1000517
Markowiak-Kopeć, P. & Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 12, 1107 (2020). https://doi.org/10.3390/nu12041107
Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D. Q. H., Sperandio, M. & Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Science 23, 1105 (2022). https://doi.org/10.3390/ijms23031105
Liu, X. F., Shao, J. H., Liao, Y. T., Wang, L. N., Jia, Y., Dong, P. J., Liu, Z. Z., He, D. D., Li, C. & Zhang, X. Regulation of short-chain fatty acids in the immune system. Frontiers in Immunology 14, 1186892 (2023). https://doi.org/10.3389/fimmu.2023.1186892
Verma, B., Ashique, S., Mishra, N., Kumar, N., Tyagi, N., Kumar, S., Ingawale, D., Mulgund, S. & Namdeo, A. G. Role of Synbiotics on Modulation of Inflammation. Synbiotics in Human Health: Biology to Drug Delivery 25–54 (2024). doi:10.1007/978-981-99-5575-6_2
Martinez Guevara, D., Vidal Cañas, S., Palacios, I., Gómez, A., Estrada, M., Gallego, J. & Liscano, Y. Effectiveness of Probiotics, Prebiotics, and Synbiotics in Managing Insulin Resistance and Hormonal Imbalance in Women with Polycystic Ovary Syndrome (PCOS): A Systematic Review of Randomized Clinical Trials. Nutrients 16, 3916 (2024). https://doi.org/10.3390/nu16173916
Singha, B., Singh, V. & Soni, V. Alternative therapeutics to control antimicrobial resistance: a general perspective. Frontiers in Drug Discovery 4, 1385460 (2024). https://doi.org/10.3389/fdd.2024.1385460
Rozé, J. C., Barbarot, S., Butel, M. J., Kapel, N., Waligora-Dupriet, A. J., De Montgolfier, I., Leblanc, M., Godon, N., Soulaines, P., Darmaun, D., Rivero, M. & Dupont, C. An α-lactalbumin-enriched and symbiotic-supplemented v. a standard infant formula: a multicentre, double-blind, randomised trial. British Journal of Nutrition 107, 1616–1622 (2012). https://doi.org/10.1017/S0007114512000184
Chanda, S., Bonde, G. V., Tiwari, R. K. & Bishnoi, A. Synergistic Welfare of Synbiotic Nutraceuticals on Chronic Respiratory Diseases. Synbiotics in Human Health: Biology to Drug Delivery 535–549 (2024). https://doi.org/10.1007/978-981-99-5575-6_27
Kim, Y. T. & Mills, D. A. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Science and Biotechnology 33, 2065–2080 (2024). https://doi.org/10.1007/s10068-024-01620-1
Hojsak, I. & Kolaček, S. Role of Probiotics in the Treatment and Prevention of Common Gastrointestinal Conditions in Children. Pediatric Gastroenterology and Hepatology Nutr 27, 1–14 (2024). https://doi.org/10.5223/pghn.2024.27.1.1
Schnadower, D., Sapien, R. E., Casper, T. C., Vance, C., Tarr, P. I., O’Connell, K. J., Levine, A. C., Roskind, C. G., Rogers, A. J., Bhatt, S. R., Mahajan, P., Powell, E. C., Olsen, C. S., Gorelick, M. H., Dean, J. M. & Freedman, S. B. Association between Age, Weight, and Dose and Clinical Response to Probiotics in Children with Acute Gastroenteritis. Journal of Nutrition 151, 65 (2020). https://doi.org/10.1093/jn/nxz252
García-Santos, J. A., Nieto-Ruiz, A., García-Ricobaraza, M., Cerdó, T. & Campoy, C. Impact of Probiotics on the Prevention and Treatment of Gastrointestinal Diseases in the Pediatric Population. International Journal of Molecular Science 24, 9427 (2023). https://doi.org/10.3390/ijms24119427
Paiandeh, M., Maghalian, M., Mohammad-Alizadeh-Charandabi, S. & Mirghafourvand, M. The effect of probiotic, prebiotic, and synbiotic supplements on anthropometric measures and respiratory infections in malnourished children: a systematic review and meta-analysis of randomized controlled trials. BMC Pediatrics 24, 702 (2024). https://doi.org/10.1186/s12887-024-05179-y
Guamán, L. P., Carrera-Pacheco, S. E., Zúñiga-Miranda, J., Teran, E., Erazo, C. & Barba-Ostria, C. The Impact of Bioactive Molecules from Probiotics on Child Health: A Comprehensive Review. Nutrients 16, 3706 (2024). https://doi.org/10.3390/nu16213706
Abeltino, A., Hatem, D., Serantoni, C., Riente, A., De Giulio, M. M., De Spirito, M., De Maio, F. & Maulucci, G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 16, 3806 (2024). https://doi.org/10.3390/nu16223806
Saeed, N. K., Al-Beltagi, M., Bediwy, A. S., El-Sawaf, Y. & Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World Journal of Gastroenterology 28, 1875 (2022). https://doi.org/10.3748/wjg.v28.i18.1875
Pieren, D. K. J., Boer, M. C. & Wit, J. de. The adaptive immune system in early life: The shift makes it count. Front Immunol 13, 1031924 (2022). https://doi.org/10.3389/fimmu.2022.1031924
Maftei, N. M., Raileanu, C. R., Balta, A. A., Ambrose, L., Boev, M., Marin, D. B. & Lisa, E. L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 12, 234 (2024). https://doi.org/10.3390/microorganisms12020234
Copyright (c) 2025 Amerta Nutrition

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
AMERTA NUTR by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).
4. The Creative Commons Attribution Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violation.












































