RNA ISOLATION OF DENGUE VIRUS TYPE 1 WITH DIFFERENT PRECIPITATION SOLVENTS: DIMETHYL SULFOXIDE, ACETONE, AND ETHANOL 70%

Anisa Maharani, Teguh Hari Sucipto, Harsasi Setyawati, Siti Churrotin, Ilham Harlan Amarullah, Puspa Wardhani, Aryati Aryati, Shuhai Ueda, Soegeng Soegijanto

= http://dx.doi.org/10.20473/ijtid.v7i3.6748
Abstract views = 721 times | downloads = 1042 times

Abstract


Dengue Hemorrhagic Fever (DHF) is caused by dengue viruses that belong to Flaviviridae. The disease is known to be caused by 4 types of dengue viruses, namely DENV-1, DENV-2, DENV-3, and DENV-4 associated with antigenic. Dengue virus is a virus RNA that causes illness with clinical manifestations of Dengue Fever, Dengue Hemorrhagic Fever and Dengue Shock Syndrome. The aim of research was to determine the effectiveness of dimethyl sulfoxide, acetone, and ethanol 70% as precipitation solvent in the process of RNA isolation. The method used was Reverse Transcription - Polymerase Chain Reaction (RT-PCR) and Polymerase Chain Reaction (PCR) with specific primers for dengue virus type 1 (DENV-1). RNA isolation can be done easily using an RNA Isolation Kit. Use of RNA Isolation Kit results in a purer RNA isolate from contaminants and from RNA degradation. In generally the isolation is using cold ethanol / alcohol with concentration 90-95%. Ethanol / Alcohol does not dissolve RNA and light density of alcohol lighter than water makes RNA rise and hover on the surface. In RNA isolation solvent precipitation that used are acetone, ethanol 70%, and DMSO. In qualitative RNA measurements using agarose gel electrophoresis and was examined under the UV light-illuminator and quantitative RNA measurements using Nanodrop spectrophotometry with absorbance ratio at 260/280 and 260/230 showed a good result indicated by the appearance of the band on electrophoresis results in PCR. While the measurement quantitatively is showed that there was still protein contamination but the results are quite good because it does not much different from the ratio set in the reference. Acetone, ethanol 70%, and DMSO can be used as a substitute of 96% ethanol in the process of RNA isolation in DENV-1 virus and can also be applied to other dengue virus because the structure of the 4th antigen serotype is very similar one with the other and no effect.


Keywords


RNA, Precipitation Solvents, DMSO, Acetone, Ethanol

Full Text:

PDF

References


REFERENCES

Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop Med Health. 2011 Dec;39(4Suppl):3–11.

Saptawati L, Febrinasari RP, Yudhani RD, Faza AG, Ummiyati HS, Sudiro TM, et al. In vitro study of eight Indonesian plants extracts as anti Dengue virus. Heal Sci J Indones. 2017;8(1):12–8.

WHO WMO. Atlas of health and climate change. Health and Environment Series. 2012. 176 p.

Sharma A, Kumar S, Tripathi P. Assessment of Achyranthes aspera induced toxicity and molecular analysis of RAPD-PCR profiles of larval genomic DNA of Aedes aegypti L. (Diptera: Culicidae). J Parasit Dis. 2017 Dec 24;41(4):1066–73.

Organization WH. Dengue Haemorrhagic Fever : early recognition, diagnosis and hospital management. World Heal Organ. 2006;111.

Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc. 2006;1(5):2320–5.

Hsia A-P, Chen HD, Ohtsu K, Schnable PS. DNA extraction from freeze-dried plant tissue with CTAB in a 96-well format. Cold Spring Harb Protoc. 2010 Nov 1;2010(11):pdb.prot5516.

Ouyang K, Li J, Huang H, Que Q, Li P, Chen X. A simple method for RNA isolation from various tissues of the tree Neolamarckia cadamba. Biotechnol Biotechnol Equip. 2014 Nov 2;28(6):1008–13.

Turaki AA, Ahmad B, Magaji UF, Abdulrazak UK, Yusuf BA, Hamza AB. Optimised cetyltrimethylammonium bromide (CTAB) DNA extraction method of plant leaf with high polysaccharide and polyphenolic compounds for downstream reliable molecular analyses. African J Biotechnol. 2017 Jun 14;16(24):1354–65.

Manning K. Isolation of nucleic acids from plants by differential solvent precipitation. Anal Biochem. 1991 May 15;195(1):45–50.

Martins R, Queiroz JA, Sousa F. Ribonucleic acid purification. J Chromatogr A. 2014 Aug 15;1355:1–14.

Choudhary SB, Kumar M, Chowdhury I, Singh RK, Pandey SP, Sharma HK, et al. An efficient and cost effective method of RNA extraction from mucilage, phenol and secondary metabolite rich barktissue of tossa jute (C. olitorius L.) actively developing phloem fiber. 3 Biotech. 2016 Jun;6(1):100.

LAPORAN-isolasi-dna-fix.

Floriano WB, Nascimento MAC. Dielectric constant and density ofwater as a function of pressure at constant temperature. Brazilian JPhys. 2004 Mar;34(1):38–41.

Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam A V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992 Mar;30(3):545–51.

Sucipto TH, Labiqah A, Churrotin S, Laila N, Ahwanah F. Molecular Surveillance of Dengue Virus Serotype Using Polymerase Chain Reaction in Surabaya 2013. 2014;5(1).

Ansori A, Sucipto T, Deka P, Ahwanah N, Churrotin S, Kotaki T, et al. Differences of Universal and Multiplex Primer for Detection of Dengue Virus from Patients Suspected Dengue Hemorrhagic Fever (DHF) in Surabaya. Indones J Trop Infect Dis. 2015 Dec 11;5(6):147.

Kotaki T, Yamanaka A, Mulyatno KC, Churrotin S, Labiqah A, Sucipto TH, et al. Continuous dengue type 1 virus genotype shifts followed by co-circulation, clade shifts and subsequent disappearance in Surabaya, Indonesia, 2008-2013. Infect Genet Evol. 2014 Dec;28:48–54.

Kotaki T, Yamanaka A, Mulyatno KC, Labiqah A, Sucipto TH, Churrotin S, et al. Phylogenetic analysis of dengue virus type 3 strains primarily isolated in 2013 from Surabaya, Indonesia. Jpn J Infect Dis. 2014;67(3):227–9.

Kotaki T, Yamanaka A, Mulyatno KC, Churrotin S, Sucipto TH, Labiqah A, et al. Divergence of the dengue virus type 2 Cosmopolitan genotype associated with two predominant serotype shifts between1 and 2 in Surabaya, Indonesia, 2008-2014. Infect Genet Evol. 2016 Jan;37:88–93.

Aryati, Soetjipto, Hariadhi S, Rantam FA SS. Profile serotype virus dengue di Indonesia tahun 2003–2005. Maj Ked Trop Ind. 2006;17(1):72–80.

Bettelheim, F.A. & Landesberg J.M. Laboratory Experiments for General, Organic, and Biochemistry. 2007.

Irawan H. Analisis DNA. 2014.

Anief M. Farmasetika. GadjahMada University Press; 2007. 110-111 p.

Fatchiyah A, Widyarti LE RS. Biologi Molekular Prinsip Dasar Analisis. Malang: Erlangga; 2011.

AMANDA UD. Isolasi RNA total dari mesokarp buah kelapa sawit (Elaeis guineenssis Jacq. var. Tenera). 2015;1(April):171–6.

Farrell RE. RNA methodologies: A laboratory guide for isolation and characterization. In: Elsevier Academic Press. 3rd ed. Burlington; 2005.

Toan NT, Rossi S, Prisco G, Nante N, Viviani S. Dengue epidemiology in selected endemic countries: factors influencing expansion factors as estimates of underreporting. Trop Med Int Health. 2015 Jul;20(7):840–63.

Sucipto TH, Kotaki T, Mulyatno KC, Churrotin S, Labiqah A, Soegijanto S, et al. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia. J Trop Med. 2018;2018:8127093.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Indonesian Journal of Tropical and Infectious Disease

View My Stats

IJTID Indexed by : 

        

 
IJTID (pISSN 2085-1103eISSN 2356-0991is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Institute of Tropical Disease - Airlangga University
Gedung Lembaga Penyakit Tropis Lt.1, Kampus C Universitas Airlangga
Jln. Mulyorejo Surabaya 60115, Indonesia
E-mail: ijtid@itd.unair.ac.id