Pemanfaatan Paket ddp di Software R untuk Analisis Pola Pangan Harapan
Downloads
Background: Desirable dietary pattern (DDP) is a variety of food nutrition intake that is calculated based on energy (calory) consumption. A DDP index close to 100 has a meaning that the food intake varies. Badan Ketahanan Pangan RI (BKP) and Nutrisurvey have developed a DDP index calculation software. As an alternative, ddp package of R software can be also calculated ddp index.
Objectives: To apply the ddp package of Software R in calculating and analyzing DDP of individuals both descriptive and inferential analyses and to compare the ddp package with the application of PPH Susenas and Nutrisurvey Software.
Methods: This research applied survey and simulation methods. The survey was conducted on the 3rd-semester students of the Food Technology Department, University of Sultan Ageng Tirtayasa via an online survey. They administered both closed questions about dietary patterns and opened questions of a list of their daily food intake. Calculation and analysis of the DDP applied in the valid data in the ddp package of software R. The DDP analyses were followed by both descriptive and inferential analyses including t-test and simple linear regression.
Results: The ddp packaged required 7 minutes to input the menu data of each person per day. Compared to Nutrisurvey, it required only 5 minutes. There were different results between the ddp package and Nutrisurvey because a category of food could absent in the Nutrisurvey databases. The harmonization application of the DDP analysis Susenas, on the other hand, had similar results. Both descriptive and inferential analyses as a further analysis can be applied easily. The descriptive analysis showed that the majority of respondents had a low value of energy, protein, and carbohydrate, while the inferential statistic resulted in that the food expenditure more than 70% significantly affected the DDP score.
Conclusions: The ddp package could calculate and analyzed the DDP very well and had an equal result with the harmonization application of the DDP analysis susenas. Although the application process of the ddp package required a longer time than that of Nutrisurvey, the databases of the ddp package were more precise and suitable for the DDP calculation and analysis in Indonesia.
BKP Kementan. Panduan Perhitungan Pola Pangan Harapan (PPH). (Badan Ketahanan Pangan Kementerian Pertanian, 2015).
Hardinsyah, R., B. D. ,. &. Retnaningsih, H. T. ,. &. Wijaya. Analisis Kebutuhan Konsumsi Pangan. (Pusat Studi Kebijakan Pangan Dan Gizi IPB Dan Pusat Pengembangan Konsumsi Pangan, Badan BIMAS Ketahanan Pangan, 2002).
DPPS Andadari, T. M. Keragaman Pangan dan Tingkat Kecukupan Energi serta Protein Pada Balita. Amerta Nutr. 1, 172–179 (2017).
Y Widodo, F. E., S. Sandjaja. Skorp Pola Pangan Harapan dan Hubungannya dengan Status Gizi Anak Usia 0,5 – 12 Tahun di Indonesia. Penelit. Gizi Dan Makanan 40, 63–75 (2017).
M Handayani, R. I., WD Sayekti. Pola Konsumsi Pangan Rumah Tangga pada Desa Pelaksana dan Bukan Pelaksana Program Percepatan Penganekaragaman Konsumsi Pangan (P2KP)di Kabupaten Pringsewu. J. Ilmu Ilmu Agribisnis 7, 28–35 (2019).
S Argandi, T. N., L. Trimo. Faktor-Faktor yang Memperngaruhi Pola Pangan Harapan (PPH) di Kabupaten Bandung. J. Agribisnis Terpadu 11, 126–140 (2018).
D Deshaliman, A. G. Perencanaan Penyediaan Pangan Penduduk Ibukota Negara di Provinsi Kalimantan Timur Tahun 2024 Telaah Berbasis Pola Pangan Harapan. J. Pilar Ketahanan Pangan 1, 25–38 (2019).
BKP Kementan. Aplikasi Analisis Konsumsi dan Perencanaan Pangan. (Badan Ketahanan Pangan Kementerian Pertanian, 2012).
BKP Kementan. Aplikasi Harmonisasi Analisis PPH Data Susenas 2017. (Badan Ketahanan Pangan Kementerian Pertanian, 2017).
Anwar, & H., K. Konsumsi Pangan dan Gizi serta Skor Pola Pangan Harapan pada Dewasa Usia 19-49 Tahun di Indonesia. J. Gizi Dan Pangan 9, 51–68 (2014).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).
Peng, R. D. Reproducible research in computational science. Science 1226–1227 (2011).
Sarvina, Y. Pemanfaatan Software Open Source R untuk Penelitian Agroklimat. Inform. Pertan. 26, 23–30 (2017).
Budiaji, W. Penerapan Reproducible Research pada RStudio dengan Bahasa R dan Paket Knitr. Khazanah Inform. J. Ilmu Komput. Dan Inform. 5, 1–5 (2019).
Budiaji, W. ddp: desirable dietary pattern. (2020).
I Kusumastuty, S. M., LB Harti. Perbedaan Kandungan Serat Pangan pada Makanan Siap Saji Khas Indonesia yang Dianalisis dengan Menggunakan Nutrisurvey dan Enzimatik Gravimetri. Maj. Kesehat. FKUB 3, 196–203 (2016).
D Handayani, W. R., N. Azizah, H. Hanifa. Densitas Energi dan Sajian Karbohidrat Makanan Tradisional dan Modern di Kota Malang. Indones. J. Hum. Nutr. 3, 11–18 (2016).
V Silalahio, T. A., E. Aritonang. Potensi Pendidikan Gizi dalam Meningkatkan Asupan Gizi pada Remaja Putri yang Anemia di Kota Medan. J. Kesehat. Masy. 11, (2016).
AB Haq, E. M. Status Gizi, Asupan Makan Remaja Akhir yang Berprofesi sebagai Model. J. Nutr. Coll. 3, 489–494 (2014).
Priambodo, N. D. Analisis Neraca Bahan Makanan Kota Kediri Tahun 2018. AGRIOVET 1, 226–236 (2019).
R Winati, E. D., AH Yusra. Pola Pangan Harapan Petani Ubi Ungu di Desa Sungai Ambangah Kabupaten Kuburaya. in Kebijakan untuk Petani: Pemberdayaan untuk Pertumbuhan dan Pertumbuhan yang Memberdayakan 139–154 (Perhimpunan Ekonomi Pertanian Indonesia, 2014).
Budiaji, W. Skala Pengukuran dan Jumlah Respon Skala Likert. J. Ilmu Pertan. Dan Perikan. 2, 127–133 (2013).
Hutchinson S.R., C. D. L. A Review of Methodological Characteristics of Research Published in Key Journals in Higher Education: Implications for Graduate Research Training. Res. High. Educ. 45, 383–403 (2004).
Jamie DeCoster, A.-M. R. I., Marcello Gallucci. Best Practices for Using Median Splits, Artificial Categorization, and their Continuous Alternatives. J. Exp. Psychopathol. 2, 197–209 (2011).
Wickham, H. testthat: Get Started with Testing. R J. 3, 5–10 (2011).
Angel Rubio, F. deVillar. Code Profiling in R: A Review of Existing Methods and an Introduction to Package GUIProfiler. R J. 7, 275–287 (2015).
Budiaji, W. Partitioning Clustering Algorithms in Food Security Mapping. (Universitat fur Bodenkultur Wien, 2019).
Budiaji, W. kmed: Distance-Based k-Medoids. (2019).
Daniel Torres-Salinas, E. D. L.-C., Nicolas Robinson-Garcia, Evaristo Jimenez-Contreras, Francisco Herrera. On the use of biplot analysis for multivariate bibliometric and scientific indicators. J. Am. Soc. Inf. Sci. Technol. 64, 1468–1479 (2013).
Imron Rosyadi, D. P. Tingkat Ketahanan Pangan Rumah Tangga di Desa Tertinggal. J. Ekon. Pembang. 13, 303–315 (2012).
AMERTA NUTR by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).
4. The Creative Commons Attribution Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violation.