Deandra Ardya Sutoyo, Dominikus Raditya Atmaka, Lisandra Maria G. B. Sidabutar

Abstract views = 1533 times | downloads = 1323 times


Obesity is caused by several factors. Gut microbiota composition is known to be one of the factors to play a role in modulating the obesity process. Nutrient factors and bioactive compounds from food can infl uence and help in modifying the gut microbiota composition, especially Firmicutes and Bacteroidetes. The purpose of this article is to discuss how signifi cant the role of nutrients and other bioactive compounds on Firmicutes and Bacteroidetes ratio in solving the obesity problem. This article was compiled based on the literature search in the last ten years, related to nutrients and bioactive compounds infl uence Firmicutes/Bacteroidetes ratio in obesity. The results from several literature searches provided evidence that alteration in gut microbiota composition was linked to the increase of body weight through metabolic pathways, which was characterized by the increasing number of Firmicutes, the decreased number of Bacteroidetes, and an increase in Firmicutes/Bacteroidetes ratio. The increasing number of Firmicutes could induce short-chain fatty acid (SCFA) production and lead to more energy harvesting. Several dietary factors from fi ber and amino acid, as well as bioactive compounds from an organic acid and polyphenol compounds, could infl uence the gut microbiota composition by reducing the Firmicutes level and increasing Bacteroidetes. The gut microbiota composition, especially Firmicutes and Bacteroidetes, could be induced by modifying diet enriched with fi ber, polyphenol compounds, and other specifi ed nutrients


obesity; dietary factors; gut microbiota; F/B ratio

Full Text:



Andoh, A., Nishida, A., Takahashi, K., Inatomi, O., Imaeda, H., Bamba, S., ... Kobayashi, T. (2016). Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of Clinical Biochemistry Nutrition, 59(1), 65-70. Retrieved from:

Angelakis, E., Armougom, F., Million, M., & Raoult, D. (2012). The relationship between gut microbiota and weight gain in humans. Future Microbiology, 7(91), 109. Retrieved from:

Apovian, C. M. (2016). The obesity epidemic-understanding the disease and the treatment. New England Journal of Medicine, 374:177–179. Retrieved from:

Arora, T., Sharma, R., & Frost, G. (2011). Propionate. Anti-obesity and satiety factor? Appetite, 56(2), 511–515. Retrieved from:

Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., ... Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(4), 15718–15723. Retrieved from:

Barczynska, R., Litwim, M., Slizewska, K., Berdowska, A., Bandurska, K., Libudzisz, Z., & Kapusniak, J. (2018). Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Polish Journal of Microbiology, 67(3), 339-345. Retrieved from:

Beh, B. K., Mohamad, N. E., Yeap, S. K., Lim, K. L., Ho, W. Y., Yusof, H. M., ... Alitheen, N.B. (2016). Polyphenolic profi les and the in vivo antioxidant effect of nipa vinegar on paracetamol induced liver damage.Royal Society of Chemistry Advance, 68, 63304-63313. Retrieved from:!divAbstract

Beh, B. K., Mohamad, N. E., Yeap, S.K., Lim, K.L., Ho, W.Y., Yusof, H.M., ... Alitheen, N.B. (2017). Anti-obesity and anti-inflammatory eff ects of synthetic acetic acid vinegar and Nipa vinegar on high-fat-diet induced obese mice. Nature, 7(1), 1-9. Retrieved from:

Boeverts, L., Hoorenbeeck, K. V., Kortleven, I., Noten, C. V., Hens, N., Vael, C., ... Vankerckhoven, V. (2013). Diff erences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens, 5(10). Retrieved from:

Bomhof, M. R., Saha, D. C., Reid, D. T., Paul, H. A., & Reimer, R. A. (2014). Combined eff ects of oligofructose and Bifi dobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring), 22(3), pp. 763-71. Retrieved from:

Brown, L., Rosner, B., Willett, W. W., & Sacks, F. M. (1999). Cholesterol-lowering effects of dietary fiber: a meta-analysis. American Journal of Clinical Nutrition, 69(1), 30-42. Retrieved from:

Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., ... Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56(7), pp. 1761–1772. Retrieved from:

Cani, P. D., Delzenne, N. M., Amar, J., & Burcelin, R. (2008). Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie Biologie, 56(5), 305-309. Retrieved from:

Cani, P. D., Osto, M., Geurts, L., & Everard, A. (2012). Involvement of gut microbiota in the development of low-grade infl ammation and type 2 diabetes associated with obesity. Gut Microbes, 3(4), pp 279-288. Retrieved from:

Cantarel, B. L., Lombard, V., & Henrissat, B. (2012). Complex carbohydrate utilization by the healthy human microbiome. PLoS One, 7(6), e28742. Retrieved from:

Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Benefi cial eff ects of high dietary fi ber intake in patients with type 2 diabetes mellitus. New England Journal of Medicine, 342, pp. 1392-1398. Retrieved from:

Chen, J., He, X., & Huang, J. (2014). Diet eff ects in gut microbiome and obesity, Journal of Food Science, 79(4). Retrieved from:

Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut, 22(9), 763-779. Retrieved from:

Cummings, J. H. (1983). Fermentation in the human large intestine: evidence and implications for health. Lancet, 1(8335), 1206-9. Retrieved from:

Cummings, J. H., & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology, 70(6), 443-459. Retrieved from:

Cummings. J. H., Rombeau, J. L., & Sakata, T. (1995). Physiological and clinical aspects of short chain fatty acid metabolism. Cambridge University Press: Cambridge, 87–105.

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., ... Turnbaugh, P.J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. Retrieved from:

Davis, C. D. (2016). The gut microbiome and its role in obesity, Nutrition Today, 51(4), pp. 167–174. Retrieved from:, N. M., 2003. Oligosaccharides: state of the art. Nutrition society, 62(1), 177-182. Retrieved from:

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., ... Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America,.107(33), 14691–14696. Retrieved from:

De Souza, A. Z., Zambom, A. Z., Abboud, K. Y., Reis, S.K., Tannihao, F., Guadagnini, D., ... Prada, P.O. (2015). Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition, 31(6), 884-889. Retrieved from:

De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., ..., Mithieux, G., (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell, 156(1), 84-96. Retrieved from:

Degen, L., Oesch, S., & Casanova, M., (2005). Eff ect of peptide YY 3-36 on food intake in humans. Gastroenterology, 129(5), 1430-1436. Retrieved from:

Dibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microfl ora on nutrition and metabolism. Journal of Applied Poultry Research, 11, 453–463. Retrieved from:

Dong, J., Zhu, Y., Ma, Y., Xiang, Q., Shen, R., & Liu, Y. (2016). Oat products modulate the gut microbiota and produce anti-obesity eff ects in obese rats. Journal of Functional Foods, 205, 408-420. Retrieved from:

Eslinger, A. J., Eller, L. K., & Reimer, R. A. (2014). Yellow pea fi ber improves glycemia and reduces Clostridium leptum in diet- induced obese rats. Nutrition Research, 34(8), pp. 714-22. Retrieved from:

Flint, H. K., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 9, 577-589. Retrieved from:, J. (2014). Overweight and Obesity in Adults, UWS Clinics: Conservative Care Pathways.

Graf, D., Di Cagno, R., Fåk, F., Flint, H.J., Nyman, M., Saarela, M., & Watzl, B. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26. Retrieved from:

Graham, C., Mullen, A., & Whelan, K. (2015). Obesity and the gastrointestinal microbiome: a review of associations and mechanisms. Nutrition Reviews, 73(6), 376-385. Retrieved from:

Greenfi eld, J. R., Farooqi, I. S., Keogh, J. M., Henning, E., Habib, A. M., Blackwood, A., ... Gribble, F.M. (2009). Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. American Journal of Clinical Nutrition, 89(1), 106-113. Retrieved from:

Grootaert, C., Van den Abbeele, P., Marzorati, M., Broekaert, W. F., Courtin, C. M., Delcour, J. A., ... Van de Wiele, T., (2009). Comparison of prebiotic eff ects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 69(2), 231-42. Retrieved from:

Han, K. S., Bose, S., Wang, J. H., Kim, B. S., Kim, M. J., Kim, E. J., Kim, H. J., (2015). Contrasting eff ects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Molecular Nutrition and Food Research, 59(5), 1004-1008. Retrieved from:

Henning, S. M., Yang, J., Shao,P., Lee, R. P., Huang, J., Ly, A., ... Li, Z. (2017). Health benefi t of vegetable/fruit juice-based diet: Role of microbiome. Nature, 7(1), 1-9. Retrieved from:

Hester, S. N., Mastaloundis, A., Gray, R., Antony, J. M., Evans, M., & Wood, S. M. (2018). Effi cacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. Journal of Nutrition and Metabolism, 2018. Retrieved from:

Hill, J. O., Wyatt, H. R., & Peters, J. C. (2013). Energy Balance and Obesity. Circulation, 126(1), 126-132. Retrieved from:

Hou, Y. P., He, Q. Q., Ouyang, H. M., Peng, H. S., Wang, Q., Li, J., ... Yin, A. H. (2017). Human gut microbiota associated with obesity in Chinese children and adolescents. BioMed Research International, 2017. Retrieved from:

Hughes, S. A., Shewry, P. R., Li, L., Gibson, G. R., Sanz, M. L., & Rastall, A. A. (2007). In vitro fermentation by human fecal microflora of wheat arabinoxylans. Journal of Agricultural and Food Chemistry, 55(11), 4589-4595. Retrieved from:

Ismail, N. A., Ragab, S. H., ElBaky, A. A., Shoeib, A. R. S., Alhosary, Y., & Fekry, D. (2011). Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 7(3), 501-507. Retrieved from:

Jamar, G., Estadella, D., & Pisani, L. P. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions, BioFactors, 43(4), 507–516. Retrieved from:

Jiang, T., Gao, X., Chao, W., Tian, F., Lei, Q., Bi, J., ..., Wang, X. (2016). Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients, 8(3), 126. Retrieved from:

Kasai, C., Sugimoto, K., Moritani, I., Tanaka, J., Oya, Y., Inoue, H., ... Takase, K. (2015). Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 15: 100. Retrieved from:

Kishimoto, Y., Oga, H., Tagami, H., Okuma, K., & Gordon, D.T. (2007). Suppressive eff ect of resistant maltodextrin on postprandial blood triacylglycerol elevation. European Journal of Nutrition, 46(3), 133-138. Retrieved from:

Krebs, M., Krssak, M., Bernroider, E., Anderwald, C., Brehm, A., Meyerspeer, M., ... Roden, M., (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes, 51(3), 599-605. Retrieved from:

Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W., & DiBaise, J. K. (2012). Eff ects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice, 27(2), 201–214. Retrieved from:

Krych, L., Hansen, C. H., Hansen, A. K., van den Berg, F. W., & Nielsen, D. S. (2013). Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One, 8(5), e62578. Retrieved from:

Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V., ... Vaiserman, A., (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17(1). Retrieved from:

Korem, T., Zeevi, D., Suez, J., Weinberger, A., Avnit-Sagi, T., Pompan-Lotan, M., ... Segal, E. (2015). Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science, 349(6252), 1101-1106. Retrieved from:

Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124(4), 837–48. Retrieved from:

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122), 1022–1023. Retrieved from:

Lin, H. V., Frassetto, A., Kowalik, E. J., Nawrocki, A. R., Lu, M.M., Kosinski, J. R., ... Marsh, D. J. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. Plos ONE, 7(4), e35240. Retrieved from:

Li, Y., Innocentin, S., Withers, D. R., Roberts, N. A., Gallagher, A. R., Grigorieva, E. F., ... Veldhoen, M. (2011). Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell, 147(3), 629-40. Retrieved from:

Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H., & Bischoff , S. C. (2016). Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLOS ONE, 11(2), e0149564. Retrieved from:

Macfarlane, S., Macfarlane, G.T., (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society,62(1), 67–72. Retrieved from:

Miller, T. L., & Wolin, M. J. (1979). Fermentations by saccharolytic intestinal bacteria. American Journal of Clinical Nutrition, 32(1), 164-172. Retrieved from:

Mohamad, N. E., Yeap, S. K., Lim, K. L., Yusof, H.M., Beh, B.K., Tan, S.W., ... Alitheen, N.B. (2015). Antioxidant eff ects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chinese Medicine, 10(3). Retrieved from:

Moschen, A. R., Wieser, V., & Tilg, H. (2012). Dietary factors: major regulators of the gut’s microbiome. Gut and Liver, 6(4), 411-416. Retrieved from:

Nie, Y., Luo, F., & Lin, Q., (2018). Dietary nutrition and gut microflora: A promising target for treating diseases. Trends in Food Science and Technology, 75, 72-80. Retrieved from:

Nielsen, T. S., Theil, P. K., Purup, S., Nørskov, N.P., & Knudsen, K.E., (2015). Eff ects of resistant starch and arabinoxylan on parameters related to large intestinal and metabolic health in pigs fed fat rich diets. Journal of Agricultural and Food Chemistry, 63(48), 10418-10430. Retrieved from:

Okazaki, Y., Sekita, A., Chiji, H., & Kato, N., (2016). Consumption of lily bulb modulates fecal ratios of firmicutes and bacteroidetes phyla in rats fed a high-fat diet. Food Science Biotechnology, 25(S), 153-156. Retrieved from:

Park, S., Ji., Y., Jung, H.Y., Park, H., Kang, J., Choi, S.H., ... Holzapfel. (2017). Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Applied Microbiology and Biotechnology, 101(4), 1605-1614. Retrieved from:

Parnell, J.A., & Reimer, R.A. (2013). Prebiotic fi bers dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. British Journal of Nutrition, 107(4),. 601-613. Retrieved from:

Phillips, S.F., Pemberton, J.H., Shorter, R.G., & Talbot, I.C. (1993). The Large Intestine: Physiology, Pathophysiology and Disease. New York: Raven Press Ltd, 51–92.

Power, S.E., O’Toole P.W., Stanton, C., Ross, R.P., & Fitzgerald, G.F. (2014). Intestinal microbiota, diet and health, British Journal of Nutrition, 111(3), 387–402. Retrieved from:

Prada, P.O., Hirabara, S. M., de Souza, C. T., Schenka, A.A., Zecchin, H.G., Vassallo, J., ... Saad, M.J. (2007). L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet- induced obesity. Diabetologia, 50(9), 1949-1959. Retrieved from:

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., ... Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59-65. Retrieved from:

Rawls, J.F., Mahowald, M.A., Ley, R.E., & Gordon, J.I. (2006). Reciprocal gut microbiota transplants from zebrafi sh and mice to germ-free recipients reveal host habitat selection. Cell, 127(2), 423–433. Retrieved from:

Riva, A., Borgo, F., Lassandro, C., Verduci, E., Morace, G., Borghi, E., & Berry, D. (2017). Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environmental Microbiology, 19(1), 95-105. Retrieved from:

Royall, D., Wolever, T.M., & Jeejeebhoy, K.N. (1990). Clinical signifi cance of colonic fermentation. American Journal of Gastroenterology, 85(10), 1307-12. Retrieved from:

Robertfroid, M. (2007). Prebiotics: the concept revisited. Journal of Nutrition, 137(3), 830s-7s. Retrieved from:

Russell, D.A., Ross, R.P., Fitzgerald, G.F., & Stanton, C. (2011). Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 149(88), 105. Retrieved from:

Salden, B.N., Troost, F.J., Wilms, E., Truchado, P., Vilchez-Vargas, R., Pieper, D.H., ... Masclee, A.A. (2018). Reinforcement of intestinal epithelial barrier by arabinoxylans in overweight and obese subjects: a randomized controlled trial arabinoxylans in gut barrier. Clinical Nutrition Journal, 37(2), 471-480. Retrieved from:

Samuel, B.S., Shaito, A., Motoike, T., Rey F.E., Backhed, F., Manchester, J.K., ... Gordon, J.I. (2008). Eff ects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767-16772. Retrieved from:

Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N.A., Donus, C., & Hardt, P.D. (2010). Microbiota and SCFA in lean and overweight healthy subjects. Obesity, 18(1), 190-195. Retrieved from:

Scott, K. P., Duncan, S. H., & Flint, H. J. (2008). Dietary fi bre and the gut microbiota. Nutrition Bulletin, 33(3), 201–211. Retrieved from:

Semova, I., Carten, J.D., Stombaugh, J., Mackey, L.C., Knight, R., Farber, S.A., Rawls, J.F. (2012). Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafi sh. Cell Host and Microbe, 12(3), 277-88. Retrieved from:

Sonnenburg, J.L., & Bäckhed, F. (2016). Diet-microbiota interactions as moderators of human metabolism. Nature, 535(7610), pp. 56-64. Retrieved from:

Smith, C.J., & Bryant, M.P. (1979). Introduction to metabolic activities of intestinal bacteria. American Journal of Clinical Nutrition, 32(1), 149-157. Retrieved from:

Spiller, G.A., Chernoff , M.C., Hill, R.A., Gates, J.E., Nassar, J.J., & Shipley, E.A. (1980). Eff ect of purifi ed cellulose, pectin, and a low-residue diet on fecal volatile fatty-acids, transit-time, and fecal weight in humans. American Journal of Clinical Nutrition, 33(4), 754-759. Retrieved from:

Stoupi, S., Williamson, G., Drynan, J.W., Barron, D., & Cliff ord, M.N. (2010). A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota, Molecular Nutrition and Food Research, 54(6). Retrieved from:

Swann, J.R., Want, E.J., Geier, F.M., Spagou, K., Wilson, I.D., Sidaway J.E., ... Holmes, E. (2011). Systemic gut microbial modulation of bile acid metabolism in host tissues compartments. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 4523-4530. Retrieved from:

Tang, W.H.W., Kitai, T., & Hazen, S.L. (2017). Gut microbiota in cardiovascular health and disease. Circulation Research, 120(7), 1183-1196. Retrieved from:

Teixeira, T.F., Grześkowiak, L., Franceschini, S.C., Bressan, J., Ferreira, C.L., & Peluzio, M.C. (2013). Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. British Journal of Nutrition, 109(5), 914-919. Retrieved from:

Topping, D.L., & Clifton, P.M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031-1064. Retrieved from:

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., & Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444:1027–1031. Retrieved from:

Upadhyaya, B., McCormack, L., Fardin-Kia, A.R., Juenemann, R., Nichenametla, S., Clapper, J., ... Dey, M., (2016). Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Nature, 6, 28797. Retrieved from:

Verdam, F.J., Fuentes, S., de Jonge, C., Zoetendal, E.G., Erbil, R., Greve, J.W., ... Rensen, S.S. (2013). Human intestinal microbiota composition is associated with local and systemic inflammation in obesity, Obesity, 21(12), E607– E615. Retrieved from:

Vitaglione, P., Mennella, I., Ferracane, R., Rivellese, A.A., Giacco, R., Ercolin, D., ... Fogliano, V. (2015). Whole-grain wheat consumption reduces infl ammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fi ber. American Journal of Clinical Nutrition, 101(2), 251-61. Retrieved from:, J. A., & Wolever, T. M. S. (2003). Faecal acetate is inversely related to acetate absorption from the human rectum and distal colon. Journal of Nutrition, 133(10), 3145-3148. Retrieved from:

Wang, H., Hong, T., Li, N., Zang, B., & Wu, X. (2018). Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochemical and Biophysical Research Communication, 498(1), 146-151. Retrieved from:, E., & Rolfes, S. R. (2013). Understanding Nutrition Thirteenth Edition. Belmont: Cengage Learning.

WHO. (2015). Obesity and overweight. Geneva: Media Centre World Health Organization.


  • There are currently no refbacks.

Copyright (c) 2020 Media Gizi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




 In Collaboration

View MGI Stats