The Role of Mineral and Synbiotic to Enhance Immunity During Covid-19 Pandemic : A Literature Review
Downloads
COVID-19 has become a pandemic in the last 3 years worldwide and cases cause high mortality and morbidity. To reduce COVID-19 infection, we need to keep our immune system healthy. Several nutrients have been shown to have specific abilities to increase the power of the immune system, but their use in the treatment of COVID-19 is still being debated. This review aims to determine the role of minerals and synbiotics in increasing immunity during the COVID-19 pandemic. Specific minerals such as zinc, selenium, iron and copper have promising potential to treat COVID-19 by reducing clinical impact, markers of inflammation, and improving immunological biomarkers. In addition to increasing mineral intake, maintaining a healthy immune system can also be done by improving the health of the gut microbiota. One of the therapies that is considered to have a positive impact on handling COVID-19 is using synbiotics (a combination of prebiotics and probiotics). However, the safety and efficacy of mineral and synbiotic supplementation in COVID-19 patients as adjunctive therapy still requires further research. Minerals and synbiotics can help boost the immune system and reduce symptoms during a COVID-19 infection.
Alpert, P. T. (2017). The Role of Vitamins and Minerals on the Immune System. Home Health Care Management & Practice, 29(3), 199–202. https://doi.org/10.1177/1084822317713300
Anand, S., & Mande, S. S. (2018). Diet, Microbiota and Gut-Lung Connection. Frontiers in Microbiology, 9, 2147. https://doi.org/10.3389/fmicb.2018.02147
Andreini, C., Bertini, I., & Cavallaro, G. (2011). Minimal functional sites allow a classification of zinc sites in proteins. PloS One, 6(10), e26325–e26325. https://doi.org/10.1371/journal.pone.0026325
Avery, J. C., & Hoffmann, P. R. (2018). Selenium, Selenoproteins, and Immunity. Nutrients, 10(9), 1203. https://doi.org/10.3390/nu10091203
Barnett, J. B., Hamer, D. H., & Meydani, S. N. (2010). Low zinc status: a new risk factor for pneumonia in the elderly? Nutrition Reviews, 68(1), 30–37. https://doi.org/10.1111/j.1753-4887.2009.00253.x
Baud, D., Dimopoulou Agri, V., Gibson, G. R., Reid, G., & Giannoni, E. (2020). Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Frontiers in Public Health, 8, 186. https://doi.org/10.3389/fpubh.2020.00186
Bonaventura, P., Benedetti, G., Albarède, F., & Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmunity Reviews, 14(4), 277–285. https://doi.org/https://doi.org/10.1016/j.autrev.2014.11.008
Bouhnik, Y., Achour, L., Paineau, D., Riottot, M., Attar, A., & Bornet, F. (2007). Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutrition Journal, 6, 42. https://doi.org/10.1186/1475-2891-6-42
Bozkurt, K., Denktacs, C., Ozdemir, O., Alt1ndal, A., Avdan, Z. Y. it, & Bozkurt, H. S. (2019). Charge Transport in Bifidobacterium animalis subsp.lactis BB -12 under Various Atmospheres. Open Journal of Applied Sciences, 9, 506–514.
Brigelius-Flohé, R., Banning, A., & Schnurr, K. (2003). Selenium-Dependent Enzymes in Endothelial Cell Function. Antioxidants & Redox Signaling, 5(2), 205–215. https://doi.org/10.1089/152308603764816569
Calder, P. C. (2020). Nutrition , immunity and COVID-19. BMJ Nutrition, Prevention & Health, 0. https://doi.org/10.1136/bmjnph-2020-000085
Calder, P. C., Carr, A. C., Gombart, A. F., & Eggerdorfer, M. (2020). Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients, 4, 1181.
Cherayil, B. J. (2010). Iron and immunity: immunological consequences of iron deficiency and overload. Archivum Immunologiae et Therapiae Experimentalis, 58(6), 407–415.
Chong, H.-X., Yusoff, N. A. A., Hor, Y.-Y., Lew, L.-C., Jaafar, M. H., Choi, S.-B., Yusoff, M. S. B., Wahid, N., Abdullah, M. F. I. L., Zakaria, N., Ong, K.-L., Park, Y.-H., & Liong, M.-T. (2019). Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science, 102(6), 4783–4797. https://doi.org/10.3168/jds.2018-16103
de Araujo, G. V., de Oliveira Junior, M. H., Peixoto, D. M., & Sarinho, E. S. C. (2015). Probiotics for the treatment of upper and lower respiratory-tract infections in children: systematic review based on randomized clinical trials. Jornal de Pediatria, 91(5), 413–427. https://doi.org/https://doi.org/10.1016/j.jped.2015.03.002
DeDiego, M. L., Nieto-Torres, J. L., Regla-Nava, J. A., Jimenez-Guardeño, J. M., Fernandez-Delgado, R., Fett, C., Castaño-Rodriguez, C., Perlman, S., & Enjuanes, L. (2014). Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology, 88(2), 913–924. https://doi.org/10.1128/JVI.02576-13
Drakesmith, H., & Prentice, A. M. (2012). Hepcidin and the iron-infection axis. Science, 338(6108), 768–772.
Fooks, L. J., & Gibson, G. R. (2002). Probiotics as modulators of the gut flora. British Journal of Nutrition, 88(S1), s39–s49. https://doi.org/DOI: 10.1079/BJN2002628
Gammoh, N. Z., & Rink, L. (2017). Zinc in Infection and Inflammation. Nutrients, 9(6), 624. https://doi.org/10.3390/nu9060624
Ganz, T. (2018). Iron and infection. International Journal of Hematology, 107(1), 7–15.
Ganz, T., & Nemeth, E. (2015). Iron homeostasis in host defence and inflammation. Nature Reviews Immunology, 15(8), 500–510.
Ghneim, H. K. (2017). Selenium Concentrations for Maximisation of Thioredoxin Reductase 2 Activity and Upregulation of Its Gene Transcripts in Senescent Human Fibroblasts. Antioxidants (Basel, Switzerland), 6(4), 83. https://doi.org/10.3390/antiox6040083
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of Micronutrients and the Immune System – Working in Harmony to Reduce the Risk of Infection. Nutrients, 12(1), 236.
Guillemard, E., Tondu, F., Lacoin, F., & Schrezenmeir, J. (2010). Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. British Journal of Nutrition, 103(1), 58–68. https://doi.org/DOI: 10.1017/S0007114509991395
Günzel, D., & Yu, A. S. L. (2013). Claudins and the Modulation of Tight Junction Permeability. Physiological Reviews, 93(2), 525–569. https://doi.org/10.1152/physrev.00019.2012
Hao, Q., Dong, B. R., & Wu, T. (2015). Probiotics for preventing acute upper respiratory tract infections. Cochrane Database of Systematic Reviews, 2. https://doi.org/10.1002/14651858.CD006895.pub3
Hidayati, M. N., Perdani, R. R. W., & Karima, N. (2019). Peran Zink terhadap Pertumbuhan Anak. Majority, 8, 168–171.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., ... Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Huang, Z., Rose, A. H., & Hoffmann, P. R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 16(7), 705–743. https://doi.org/10.1089/ars.2011.4145
Hunter, J., Arentz, S., Goldenberg, J., Yang, G., Beardsley, J., Mertz, D., & Leeder, S. (2020). Rapid review protocol: Zinc for the prevention or treatment of COVID-19 and other coronavirus-related respiratory tract infections. Integrative Medicine Research, 9(3), 100457. https://doi.org/https://doi.org/10.1016/j.imr.2020.100457
Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S., & Iwasaki, A. (2011). Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5354–5359. https://doi.org/10.1073/pnas.1019378108
Institute of Medicine. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press. https://doi.org/https://www.ncbi.nlm.nih.gov/books/NBK222310/ doi: 10.17226/10026
Keim, N. L., & Martin, R. J. (2014). Dietary whole grain–microbiota interactions: insights into mechanisms for human health. Advances in Nutrition (Bethesda, Md.), 5(5), 556–557. https://doi.org/10.3945/an.114.006536
King, S., Glanville, J., Sanders, M. E., Fitzgerald, A., & Varley, D. (2014). Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. The British Journal of Nutrition, 112(1), 41–54. https://doi.org/10.1017/S0007114514000075
Kotzampassi, K., Giamarellos-Bourboulis, E. J., Voudouris, A., Kazamias, P., & Eleftheriadis, E. (2006). Benefits of a Synbiotic Formula (Synbiotic 2000Forte®) in Critically Ill Trauma Patients: Early Results of a Randomized Controlled Trial. World Journal of Surgery, 30(10), 1848–1855. https://doi.org/10.1007/s00268-005-0653-1
Kretz-Remy, C., & Arrigo, A.-P. (2001). Selenium: A key element that controls NF-κB activation and IκBα half life. BioFactors, 14(1"4), 117–125. https://doi.org/10.1002/biof.5520140116
Kusmana, F. (2017). Selenium : Peranannya dalam Berbagai Penyakit dan Alergi. Cdk-251, 44(4), 289–294.
Lee, C.-C., Kuo, C.-J., Ko, T.-P., Hsu, M.-F., Tsui, Y.-C., Chang, S.-C., Yang, S., Chen, S.-J., Chen, H.-C., Hsu, M.-C., Shih, S.-R., Liang, P.-H., & Wang, A. H.-J. (2009). Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. The Journal of Biological Chemistry, 284(12), 7646–7655. https://doi.org/10.1074/jbc.M807947200
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
Liao, Q.-J., Ye, L.-B., Timani, K. A., Zeng, Y.-C., She, Y.-L., Ye, L., & Wu, Z.-H. (2005). Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochimica et Biophysica Sinica, 37(9), 607–612. https://doi.org/10.1111/j.1745-7270.2005.00082.x
Liu, Y., Liu, Q., Jiang, Y., Yang, W., Huang, H., Shi, C., Yang, G., & Wang, C. (2020). Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells. Journal of Microbiology and Biotechnology, 30(4), 515–525. https://doi.org/https://doi.org/10.4014/jmb.1909.09041
Malan, L., Baumgartner, J., Calder, P. C., Zimmermann, M. B., & Smuts, C. M. (2015). n–3 Long-chain PUFAs reduce respiratory morbidity caused by iron supplementation in iron-deficient South African schoolchildren: a randomized, double-blind, placebo-controlled intervention. The American Journal of Clinical Nutrition, 101(3), 668–679.
Mao, S., Zhang, A., & Huang, S. (2014). Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection. Scandinavian Journal of Clinical and Laboratory Investigation, 74(7), 561–567.
Martindale, R., Patel, J. J., Taylor, B., Arabi, Y. M., Warren, M., & McClave, S. A. (2020). Nutrition Therapy in Critically Ill Patients With Coronavirus Disease 2019. Journal of Parenteral and Enteral Nutrition, n/a(n/a). https://doi.org/10.1002/jpen.1930
McCarty, M. F., & DiNicolantonio, J. J. (2020). Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Progress in Cardiovascular Diseases, S0033-0620(20)30037-2. https://doi.org/10.1016/j.pcad.2020.02.007
Mungroo, M. R., Khan, N. A., & Siddiqui, R. (2020). Novel Coronavirus: Current Understanding of Clinical Features, Diagnosis, Pathogenesis, and Treatment Options. Pathogens, 9(4), 297. https://doi.org/https://doi.org/10.3390/pathogens9040297
Nairz, M., Dichtl, S., Schroll, A., Haschka, D., Tymoszuk, P., Theurl, I., & Weiss, G. (2018). Iron and innate antimicrobial immunity”Depriving the pathogen, defending the host. Journal of Trace Elements in Medicine and Biology, 48, 118–133.
Nairz, M., Theurl, I., Swirski, F. K., & Weiss, G. (2017). "Pumping iron””how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflügers Archiv-European Journal of Physiology, 469(3–4), 397–418.
Namba, K., Hatano, M., Yaeshima, T., Takase, M., & Suzuki, K. (2010). Effects of Bifidobacterium longum BB536 Administration on Influenza Infection, Influenza Vaccine Antibody Titer, and Cell-Mediated Immunity in the Elderly. Bioscience, Biotechnology, and Biochemistry, 74(5), 939–945. https://doi.org/10.1271/bbb.90749
Nuraida, L. (2015). A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4(2), 47–55. https://doi.org/10.1016/j.fshw.2015.06.001
Oppenheimer, S. J. (2001). Iron and its relation to immunity and infectious disease. The Journal of Nutrition, 131(2), 616S-635S.
Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814
Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230. https://doi.org/DOI: 10.1079/BJN/2002541
Shetty, P. (2010). Nutrition, Immunity and Infection. Cambridge University Press.
Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan , China : a descriptive study. Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4
Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., & Liu, Y.-J. (1999). The Nature of the Principal Type 1 Interferon-Producing Cells in Human Blood. Science, 284(5421), 1835 LP – 1837. https://doi.org/10.1126/science.284.5421.1835
Skalny, A. V, Rink, L., Ajsuvakova, O. P., Aschner, M., Gritsenko, V. A., Alekseenko, S. I., Svistunov, A. A., Petrakis, D., Spandidos, D. A., Aaseth, J., Tsatsakis, A., & Tinkov, A. A. (2020). Zinc and respiratory tract infections: Perspectives for COVID"‘19 (Review). International Journal of Molecular Medicine, 46(1), 17–26. https://doi.org/10.3892/ijmm.2020.4575
Subramanian Vignesh, K., & Deepe Jr, G. S. (2016). Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses. Archives of Biochemistry and Biophysics, 611, 66–78. https://doi.org/10.1016/j.abb.2016.02.020
Sundari, E., & Nuryanto, N. (2016). Hubungan Asupan Protein, Seng, Zat Besi, Dan Riwayat Penyakit Infeksi Dengan Z-Score Tb/U Pada Balita. Journal of Nutrition College, 5(4), 520–529. https://doi.org/10.14710/jnc.v5i4.16468
Tezuka, H., Abe, Y., Asano, J., Sato, T., Liu, J., Iwata, M., & Ohteki, T. (2011). Prominent Role for Plasmacytoid Dendritic Cells in Mucosal T Cell-Independent IgA Induction. Immunity, 34(2), 247–257. https://doi.org/https://doi.org/10.1016/j.immuni.2011.02.002
Theofilopoulos, A. N., Baccala, R., Beutler, B., & Kono, D. H. (2004). TYPE I INTERFERONS (α/β) IN IMMUNITY AND AUTOIMMUNITY. Annual Review of Immunology, 23(1), 307–335. https://doi.org/10.1146/annurev.immunol.23.021704.115843
Tian, Z., Yang, L., Li, P., Xiao, Y., Peng, J., Wang, X., Li, Z., Liu, M., Bi, D., & Shi, D. (2016). The inflammation regulation effects of Enterococcus faecium HDRsEf1 on human enterocyte-like HT-29 cells. Animal Cells and Systems, 20(2), 70–76. https://doi.org/10.1080/19768354.2016.1160955
Trinchieri, G., & Santoli, D. (1978). Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. The Journal of Experimental Medicine, 147(5), 1314–1333. https://doi.org/10.1084/jem.147.5.1314
Trompette, A., Gollwitzer, E. S., Pattaroni, C., Lopez-Mejia, I. C., Riva, E., Pernot, J., Ubags, N., Fajas, L., Nicod, L. P., & Marsland, B. J. (2018). Dietary Fiber Confers Protection against Flu by Shaping Ly6c− Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 48(5), 992-1005.e8. https://doi.org/10.1016/j.immuni.2018.04.022
Wang, X., Lv, F., & Gao, G. (2010). Mutagenesis analysis of the zinc-finger antiviral protein. Retrovirology, 7(1), 19. https://doi.org/10.1186/1742-4690-7-19
Weiss, G. (2002). Iron and immunity: a double"edged sword. European Journal of Clinical Investigation, 32, 70–78.
West, C. E., Dzidic, M., Prescott, S. L., & Jenmalm, M. C. (2017). Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergology International, 66(4), 529–538. https://doi.org/https://doi.org/10.1016/j.alit.2017.08.001
Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2006). Immune-Enhancing Role of Vitamin C and Zinc and Effect on Clinical Conditions. Annals of Nutrition and Metabolism, 50(2), 85–94. https://doi.org/10.1159/000090495
Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of Selected Vitamins and Trace Elements to Immune Function. Annals of Nutrition & Metabolism, 51(4), 301–323. https://doi.org/10.1159/000107673
Wood, P. (2006). Understanding Immnunology (Second Edi). Pearson Education Limited.
Xu, K., Cai, H., Shen, Y., Ni, Q., Chen, Y., Hu, S., Li, J., Wang, H., Yu, L., Huang, H., Qiu, Y., Wei, G., Fang, Q., Zhou, J., Sheng, J., Liang, T., & Li, L. (2020). Management of COVID-19: the Zhejiang experience. In Journal of Zhejiang University (Medical Science) (Vol. 49, Issue 2, pp. 147–157). https://doi.org/10.3785/j.issn.1008-9292.2020.02.02
Zelaya, H., Alvarez, S., Kitazawa, H., & Villena, J. (2016). Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Frontiers in Immunology, 7, 633. https://doi.org/10.3389/fimmu.2016.00633
Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition, 111(6), 1297–1299. https://doi.org/10.1093/ajcn/nqaa095
Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., Li, Q., Jiang, C., Zhou, Y., Liu, S., Ye, C., Zhang, P., Xing, Y., Guo, H., & Tang, W. (2020). Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. Journal of Infection, 81(2), e16–e25. https://doi.org/https://doi.org/10.1016/j.jinf.2020.04.021
Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine, 14(2), 185–192. https://doi.org/10.1007/s11684-020-0754-0
Zubaidah, E., & Akhadiana, W. (2013). Comparative Study of Inulin Extracts from Dahlia, Yam, and Gembili Tubers as Prebiotic. Food and Nutrition Sciences, 04(11), 8–12. https://doi.org/10.4236/fns.2013.411a002
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- MEDIA GIZI INDONESIA Journal is the copyright owner of all materials published on this website.
- The formal legal provisions for access to digital articles of this electronic journal are subject to the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license (CC BY-NC-SA 4.0), which means that MEDIA GIZI INDONESIA Journal and readers reserve the right to save, transmit media / format, manage in database, maintain, and publish articles as long as it continues to include the name of the Author.
- Printed and published print and electronic manuscripts are open access for educational, research and library purposes. In addition to these objectives, the editorial board shall not be liable for violations of copyright law.