Trends in the Uses of Spirulina Microalga: A mini-review

Aondohemba Samuel Nege, Endang Dewi Masithah, Junaidi Khotib

= http://dx.doi.org/10.20473/jipk.v12i1.17506
Abstract views = 1270 times | downloads = 473 times

Abstract


Highlights
  1. Trends in the uses of Spirulina over different decades were critically examined
  2. Findings from surveyed literature indicated that Spirulina utilization was mainly focused on its food and feed potential before the last 20-30 years
  3. The review observed that research focused on the health and pharmaceutical uses, biofertilizer, bioplastic, cosmetic, bioenergy and pollution control applications of Spirulina are trends that sprouted out within the last 20-25 years.
  4. The review has successfully compiled numerous uses of Spirulina microalga for easy readership by readers since many studies have been performed on the uses Spirulina but reviews of this type spanning through different beneficial aspects of  Spirulina are still scarce. Hence, this review fills such gap.       


Abstract

There is a need to have a single document that summarises the present day uses of Spirulina. In this review, the research trend on the health and other applications of Spirulina microalga was critically evaluated. In terms of the health uses, antioxidant, antibacterial, and immunostimulant effects of Spirulina were emphasized. Other uses of the microalga discussed include the use of Spirulina for human and animal food, bioenergy, pollution and ecotoxicology control, cosmetics, bioplastics and biofertilizers. Literature search revealed that Spirulina polysaccharides, phycocyanin size and content play a role in antioxidant activity and DNA repair. The double bonds and positions of –COOH and –OH in Spirulina phenol content and γ-linolenic fatty acids (γ-LFA) have antimicrobial activity. Some compounds in Spirulina improve immune, increase survival rate and enhance distribution of proteins like hepcidin and TNF-α in animal models. High protein, vitamins, fatty acids (FAs) and glycoproteins in Spirulina are easily digestible due to its lack of cellulose and can improve human and livestock growth. Spirulina produces biodegradable and non-toxic biodiesel and useful co-products. Absorption of heavy metals by chemisorption occurs in Spirulina. Phycocyanin and β-carotene of Spirulina increase skin health, Spirulina also cause high cell proliferation and aids wound healing. Bioplastics produced from Spirulina are biodegradable, non-toxic with high blends. Biofertilizers from Spirulina have little or no residual risks, adds soil Nitrogen through Spirulina Nitrogen fixation ability. In addition, the survey of published works on Spirulina for the past two decades indicates that more research is been carried out in recent years using Spirulina, especially studies involving its health potentials and those concerned with molecular analysis. In conclusion, Spirulina is an exceptional commodity with numerous applications, and probably, some of its compounds causing those effects are yet to be isolated and that is one area for further research.


Keywords


research trends, health, food, environment, spirulina

Full Text:

PDF

References


Abdulrahman, N. M., & Ameen, H. J. H. (2014). Replacement of fishmeal with microalgae Spirulina on common carp weight gain, meat and sensitive composition and survival Pakistan Journal of Nutrition, 13(2), http://dx.doi.org/10.3923/pjn.2014.93.98.

Abu-Elala, N. M., Galal, M. K., Abd-Elsalam, R. M., Mohey-Elsaeed, O., & Ragaa, N. M. (2016). Effects of dietary supplementation of Spirulina platensis and garlic on the growth performance and expression levels of Immune-related Genes in Nile tilapia (Oreochromis niloticus). Journal of Aquaculture Research and Development 7:433. doi:10.4172/2155-9546.1000433.

Agrotech. (2012). Spirulina a live hood and a business venture. SF/2011/16.Funded by European Union. Implementation strategy of a Regional Fisheries Strategy for the Eastern-Southern Africa and India Ocean Region.http://www.fao.org/3/a-az386e.pdf

Agung, k. L. N. (2011). Effect of Spirulina Biofertilizer suspension on growth and yield of Vigna radiata (L.) Wilczek. Universities Research Journal, 4(1): 351-355

Agustini, T. W., Ma’ruf, W. F., Wibowo, B. A., & Hadiyanto. (2017). Study on the effect of different concentration of Spirulina platensis paste added into dried noodle to its quality characteristics. IOP Conf. Ser.: Earth Environ. Sci. 55012068. doi:10.1088/1755-1315/55/1/012068

Agustini, T. W., Ma’ruf, F. W., Widayat., Suzery, M., Hadiyanto. & Benjakul, S. (2016). Application of Spirulina platens is on ice cream and soft cheese with respect to their nutritional and sensory perspectives. Jurnal Teknologi (Sciences and Engineering), 78(42): 245-251. https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/8216/4953

Agustini, T. W., Suzery, M., Sutrisnanto, D. Ma’ruf, W. F., & Hadiyanto. (2014). Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. International Conference on Tropical and Coastal Region Eco Development (ICTCRED-2014) Procedia Environmental Sciences, 23: 282-289. https://doi.org/10.1016/j.proenv.2015.01.042

Ahsan, S., Arefin, S., Munshi, J. L., Begum, N., Maliha, M., Rahman, S., Bhowmik, A. & Kabir, S. (2015). In vitro antibacterial activity of Spirulina platensis extracts against clinical isolates of Salmonella enterica serovars Typhi and Paratyphi (SUBP03). Stanford Journal of microbiology; 5(1): 22-25. DOI: https://doi.org/10.3329/sjm.v5i1.26916

Ali, I. H., & Doumandji, A. (2017). Comparative phytochemical analysis and in vitrom antimicrobial activities of the cynanobacterium Spirulina platensis and the green alga Chlorella pyrenoidosa: potential application of bioactive components as an alternative to infectious diseases. Bulletin de l’Institut Scientifique, Rabat, Section Science de Vie, no 39, 4149. http://www.israbat.ac.ma/wp content/uploads/2018/05/ALI_2018.pdf

Alves, M. J., Ferreira, I. C., Froufe, H. J., Abreu, R. M., Martins, A., & Pintado, M. (2013). Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology, 115(2): 346-57, http://orcid.org/0000-0002-8115-2713.

Amer, S. A. (2016). Effect of Spirulina platensis as feed supplement on growth performance, immune response antioxidant status of mono-sex Nile Tilapia (Oreochromis niloticus). Benha Veterinary Medical Journal, 30(1): 1-10. DOI: 10.21608/bvmj.2016.31332.

Barnett, M. (2007). Arthrospira platensis: Brief History and Description. Rolla. http://citeseerx.ist.psu.edu/viewdoc/load?doi=10.1.1.624.2581&rep=rep1&type=pdf

Bashandy, S. A. E., El Awdan, S. A., Ebaid, H., & Alhazza. (2016). Antioxidant potential of Spirulinaplatensis mitigates oxidative stress and reprotoxicity induced by Sodium Arsenite in male rats. Oxidative Medicine and Cellular Longivity, Hindawi Publishing Corporation. 2016:1-8 http://dx.doi.org/10.1155/2016/7174351

Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2): 207-210

Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6): 1716–1721. https://doi:10.1016/j.biortech.2007.03.051

Bermejo, R., Talavera, E. M., Alvarez-Pez, J. M., & Orte, J. C. (1997). Chromatographic purification of phycobili proteins from Spirulina platensis. high-performance liquid chromatographic separation of their alpha and beta subunits. Journal of Chromatography A, 778: 44150.

Berthon, J., Nachat-Kappes, R., Bey, M. Cadoret, J., Renimel, I., & Filaire, E. (2017). Marine algae as attractive source to skin care. Free Radical Research, 51(6): 555–567. https://doi.org/10.1080/10715762.2017.1355550

Britz, P. J. (1996). The suitability of selected protein sources for inclusion in formulated diets for the South African abalone, Haliotis midae. Aquaculture, 140: 63–73. https://doi.org/10.1016/0044 8486(95)01197-8.

Brown, M. R., Jeffery, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331. https://doi.org/10.1016/S00448486(96)01501-3

Chakraborty, B., Jayaswal, R. P. & Pankaj, P. P. (2014). Evaluation of antibacterial activity of Spirulina platensis extracts against opportunistic pathogen model. International Journal of Pharmacognosy and Phytochemical Research, 6(4); 988-990. www.ijppr.com

Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59: 75 – 84. https://doi.org/10.1016/j.chemosphere.2004.10.005

Cliferri, O. (1983). Microbial Reviews, 47 (4), 551-578.

Colla, l. M., Furlong, E. B., & Costa, J. A. V. (2007). Antioxidant properties of Spiruina (Arthrospira) platensis cultivated under different temperatures and Nitrogen regimes. Brazilian Archives of biology and Technology, 5(1): 161-167. https://doi.org/10.1590/S1516-89132007000100020

Colla, L. M., Reinehr, C. O., Reichert, C., & Costa J. (2007). Production of biomass and neutaceutical compounds by Spirulina platensis under different temperature and Nitrogen regimes. Bioresource Technology, 98: 489–1493. https://doi.org/10.1016/j.biortech.2005.09.030

Dagnelie, P., Van Staveren, W. A., & Van den Berg, H. (1991). Vitamin B-12 from algae appears not to be bioavailable. American Journal of Clinical Nutrition, 53: 695-697.https://doi.org/10.1093/ajcn/53.3.695

Delsin, S, D., Mercurio, D. G., Fossa, M. M. & Maia Campos, P. M. B. G. (2015). Clinical efficacy of dermocosmetic formulations containing Spirulinaextract on young and mature Skin: effects on the skin hydrolipidic barrier and structural properties. Clinical Pharmacology Biopharmaceutics, 4: 144. doi:10.4172/2167-065X.1000144.

Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy conversion and Management, 50 (1): 14 – 34. https://doi.org/10.1016/j.enconman.2008.09.001

Demule, M. C. Z., Decaire, G. Z., & Decano, M. S. (1996). Bioactive substances from Spirulina platensis (cianobacteria). International Journal of Experimental Botany, 58: 93-96.

Deng, X., Fang, Z., & Liu, Y. H. (2010). Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Conversion and Management, 51(12): 2802-2807. https://doi.org/10.1016/j.enconman.2010.06.017

Dianursanti., Gozan, M., & Noviasari, C. (2018). The effect of glycerol addition as plasticizer in Spirulina platensis based bioplastic. E3S Web Conferrence, 67, 03048. https://doi.org/10.1051/e3sconf/20186703048

Dillon, J. C., Phuc, A. P., & Dubacq, J. P. (1995). Nutritional value of the alga Spirulina. World Review of Nutrition Dietetics,77:32-46.doi:10.1159/000424464

Dwivedi, S. (2012). “Bioremediation of Heavy Metal by Algae: Current and Future Perspective. Journal of Advanced Laboratory Research in Biology, 3(3): 195-199, www.sospublication.co.in.

Ebrahim, R. M. (2020). Prophylactic effect of Spirulina platensis on radiation-induced thyroid disorders and alteration of reproductive hormones in female albino rats. International Journal of Radiation Research, 18(1). DOI: 10.18869/acadpub.ijrr.18.1.83

El Baky, H. H. A., El Baroty, G. S., & Mostafa, E. M. (2019). Optimization growth of Spirulina (Arthrospira) platensisin photobioreactor under varied Nitrogen concentration for maximized biomass, carotenoids and lipid contents. Recent patents on Food, Nutrition and Agriculture, 10,00-00. DOI:10.2174/2212798410666181227125229

EI-Sheekh, Mostafa, M., Daboor, S. M., Swelin, M. A., & Mohamed, S. (2014). Production and characterization of antimicrobial active substance from Spirulina platensis. Iranian Journal of Microbiology, 6(2): 112-119.https://www.ncbi.nlm.nih.gov/pubmed/25705362.

El-Rheemkh, A., M., Zaghloul, S. M., & Essa, E. (2015).The stimulant effect of the Spirulina algae under low levels of Nitrogen fertilization on wheat plants grown in sandy soils. International Journal ChemTech Research, 8 (12): 87–91.http://www.sphinxsai.com/2015/ch_vol8_no12/1/(87-92)V8N12CT.pdf

El-Sayed, A. F. M. (1994). Evaluation of soybean meal, Spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture, 127:169-176, doi:10.1016/00448486(94)90423-5.

El-Sheekh, M., El-Shourbagy, I., Shalaby, S., & Hosny, S. (2014). Effect of Feeding Arthrospira platensis (Spirulina) on Growth and Carcass Composition of Hybrid Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus). Turkish Journal of Fisheries and Aquatic Sciences, 14(2): 471-478. DOI : 10.4194/1303-2712-v14_2_18

Emami, S. & Olfati, A. (2017). Effects of dietary supplementing of Spirulina platensis and Chlorella vulgaris microalgae on hematologic parameters in Streptozocin-induced diabetic rats. Iranian Journal Pediatric Hematology and Oncology, 7(3): 163-170. http://ijpho.ssu.ac.ir/article-1-323-en.html

Fairchild, C. D & Glazer, A. N. (1994). Nonenzymaticbilin addition to the α subunit of anapophycoerythrin. Journal of Biological Chemistry, 269: 28988-28996. https://pdfs.semanticscholar.org/7f94/f4e07496786ee9bccbe5cd9ac82f0f90e524.pdf

Fraklin Associates. (2011). Cradle-to-gate life inventory of nine plastics resins and four polyurethane precursors. The plastics division of the American Chemistry Council, Franklin Associates, a division of Eastern Research Group, Inc., Prairie village, Kansas, pp 572. https://plastics.americanchemistry.com/LifeCycle-Inventory-of-9 Plastics-Resins-and-4 Polyurethane-Precursors-Rpt-Only/

Gad, A. S., Khadrawy, Y. A., El-Nekeety, A. A., Mohamad, S. R., Hassan, N. S., & Abdel-Wahhab, M. A. (2011). Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 1-8. doi: 10.1016/j.nut.2010.04.002

Grawish, M. E. (2008). Effects of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7,12 -dimethylbenz[a]anthracene. Oral Oncolology, 44: 956-62.

Gunes, S., Tamburaci, S., Delay M. C., & Gurhan, I. D. (2017). In vitro evaluation of Spirulina plaensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharmaceutical Biology, 55(1): 1824–1832 doi: 10.1080/13880209.2017.1331249

Hoseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. (2013). Nutritional and medicinal applications of Spirulina microalgae. In: Mini-reviews in Medicinal Chemistry, 13: 1231-1237. Bentham Science Publishers.DOI:10.2174/1389557511313080009

Ibrahem, M. D., Mohamed, M. F. & Ibrahim, M. A. (2013). The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Journal of Agricultural Science, 5(6): 109, DOI:10.5539/jas.v5n6p109.

Iles, A., & Martin, A. N. (2012). Expanding bioplasstics production: sustainable business innovation in the chemical industry. Journal of Cleaner Prodution, 45: 38-49. http://dx.doi.org/10.1016/j.jclepro.2012.05.008.

Jerez, A., Partal, P., Martínez, L., Gallegos, C., & Guerrero, A. (2007). Protein-based bioplastics: effect of thermo mechanical processing Rheologica Acta, 46: 711-720. DOI 10.1007/s00397-007-0165-z

Kataoka, N., & Misaki, A. (1983). Glycolipids isolated from Spirulina maxima: structure and fatty acid composition. Agricultural and Biological Chemistry, 47(10): 2349-2355.doi:10.1080/00021369.1983.10865944

Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2005). Screening for antimicrobial agent production of some microalgae in freshwater.The Internet Journal of Microbiology, 2: 1-5. https://doi.org/10.5580/17b8.

Khan, Z., Bhadouria, P., & Bisen, P. S. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6: 373-379.https://doi.org/10.2174/138920105774370607

Klatt, J. M., Al-Najjar, M. A. A., Yilmaz, P., Lavik, Gaute., Beer, D., & Polerecky, L. (2015). Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic Spring. Applied and Environmental Microbiology. 81(6) DOI: 10.1128/AEM.03579-14

Koru, E. (2012). Earth Food Spirulina (Arthrospira): Production and Quality Standarts, Food Additive, Yehia El-Samragy (Ed.), ISBN: 978-953-51-0067-6, In Tech, Available from: http://www.intechopen.com/books/food-additive/earth-food spirulina-arthrospira production and quality standarts

Kumar, N. (2016). Effects of algal bio-fertilizer on the Vigna radiata: A critical review. International Journal Engineering Research and Applications 6 (2): 85-94. http://www.ijera.com/papers/Vol6_issue2/Part%20%201/M62018594.pdf

Kurashvili, M., Varazi, T., Khatisashivili, G., Gigolashvili, G., Adamia, G., Pruidze, M. & Gordeziani, M. (2018). Blue-green Spirulina as a tool against water pollution by 1, 1’ (2,2,2 trichloroethane-1,1-diyl) bis(4-chlorobenzene) (DDT). Annals of Agrarian Science, 16: 405 – 409. https://doi.org/10.1016/j.aasci.2018.07.005

Lanlan, Z., Lin, C., Junfeng, W., Yu, C., Xin, G., Zhaohui, Z. & Tianzhong, L. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology; 181:136-142.https://doi.org/10.1016/j.biortech.2015.01.025

Lauritano, C., Andersen, J. H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K. Ǿ., Romano, G., & Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities.Frontiers in Marine Science, 3: 68. doi: 10.3389/fmars.2016.00068.

Liestianty, D., Indah, R., Rugaiyah, A. A., Asma, A., Patimah, Sundari, & Muliadi. (2019). Nutritional analysis of Spirulina sp to promote as super food candidate. IOP Conference Series.: Materials Science and Engineering 509012031. doi:10.1088/1757-899X/509/1/012031

Macias-Sancho, J., Poersch, L. H., Bauer, W., Romano, L. A., Wasielesky, W., & Tesser, M. B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture, 426: 120-125. https://doi.org/10.1016/j.aquaculture.2014.01.028

Manigandan, M. & Kolanjinathan, K. (2017). Antibacterial activity of various solvent extracts of Spirulina platensis against human pathogens. Innovare Journal of Health Sciences; 5(1): 10-12. http://orcid.org/0000-0002-8115-2713

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1): 217-232.doi:10.1016/j.rser.2009.07.020

Mendiola, J. A., Jaime, L., Santoyo, S., Reglero, G., Cifuentes, A., Ibanez, E. & Senorans, F. J. (2007). Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food chemistry, 102: 1357-1367. doi:10.1016/j.foodchem.2006.06.068

Mostolizadeh, S., Moradi, Y., Mortazavi, M. S. & Motallebi, A. A. (2020). Effects of incorporation Spirulina platensis (Gomont, 1892) powder in wheat flour on chemical, microbial and sensory properties of pesta. Iranian Journal of Fisheries Sciences, 19(1): 410-420. DOI: 10.22092/ijfs.2019.119107

Müling, M. (2000). Characterization of Arthrospira (Spirulina) strains. Durham Thesis, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1198/

Murali, O. & Mehar, S. K. (2014). Bioremediation of heavy metals using Sprirulina. nternational Journal Geology, Earth and Environmental Sciences, ISSN: 2277–2081. 4(1): 244–249. http://www.cibtech.org/jgee.htm

Nakono, T., Yamaguchi, T., Sato, M., & Iwama, G. K. (2003). Biological Effects of Carotenoids in Fish. In International Seminar Effective Utilization of Marine Food Resource, Songkhla, Thailand. pp. 1-15).

Nege, A. S., Masithah, E. D., Khotib, J. & Ramadhan, R. (2020). Antioxidative activity and phytochemical screening of Spirulina platensis, Moringa leifera and their synergies. http://repository.unair.ac.id/view/type/article.html

Nogueira, S. M. S., Junior, J. S., Maia, H. D., Saboya, J. P. S. & Farias, W. R. L. (2018). Use of Spirulina in treatment of fish farming wastewater. Revista Ciencia Agronomica, 49(4): 599-606. https://doi.org/10.5935/1806-6690.20180068

Noman, S. (2018). Use of Spirulina in Fish Culture. A Seminar Paper Submitted to Bangabandhu Sheikh Mujibur Rahman Agricultural University, 1-31, http://bsmrau.edu.bd/seminar/wp content/uploads/sites/318/2018/05/Use-of-Spirulina-in-Fish-Culture-13-05-3016.pdf

Novak, A. C. (2010). Evaluation of the cosmetic potential of the Cyanobacterium Spirulina platensis.Universitéde Provence (Aix-Marseille I), Brazil. https://pdfs.semanticscholar.cd/008492b0d6d7ccd68b664fc3674797cfa743.pdf

O’Shaughnessy, J. A., Kelloff, G. J., Gordon, G. B., Dannenberg, A. J., Hong, W. K., Fabian, C. J., Sigman, C. C., Bertagnolli, M. M., Stratton, S. P., Lam, S., Nelson, W. G., Meyskens, F. L., Otles, S. & Pire, R. (2001). Fatty acid composition of Chlorella and Spirullina microalgae species Journal of AOAC International, 84(6): 1708-1714.

Parimi, N. S., Singh, M., Kastner, J. R., Das, K. C., Forberg, L. S. & Azadi, P. (2015). Optimization of protein extraction from Spirulina platensis to generate a potential co product and a biofuel feedstock with reduced nitrogen content. Frontiers in Energy Research, 3:30. https://doi.org/10.3389/fenrg.2015.00030

Perry, J., Staley, J. & Lory, S. (2002). Microbial Life. Sinauer Associates, Inc., p 768.

Rahman, M. A., Aziz, M. A., Al-Khulaidi, R. A. A., Sakib, N., & Islam, M. (2017). Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable. Journal Radiation Research and Applied Sciences, 10: 140-147. http://dx.doi.org/10.1016/j.jrras.2017.02.004

Rangsayatorn, N., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P. & Lanza, G. R. (2002). Phytoremediation potential of Spirulinaplatensis (Arthrospira) platensisbiosorption and toxicity studies of Cadmium. Environmental Pollution, 119: 45-53. https://doi.org/10.1016/S02697491(01)00324-4

Ravi, M., De, S. L., Azharuddin, S., & Paul, S. F. (2010). The beneficial effects of Spirulina focusing on its immunomodulatory and antioxidant properties. Journal of Nutrition and Diet Supplements, 2: 73-83, https://doi.org/10.2147/NDS.S9838.

Reddy, C. M., Bhat, V. B., Kiranmai, G., Reddy, M. N., Reddanna, P., & Madyastha, K. M. (2000). Selective inhibition of Cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochemical and Biophysical Research Communications, 277: 599-603. DOI:10.1006/bbrc.2000.3725

Romay, C., Armesto, J., Ramerez, D., Gonzalez, R., Ledon, N., & Garcia, I. (1998). Antioxidant og antiinflammatoriske egenskaper av C-phycocyanin fra blågrønne alger. Inflammation Research, 47: 36-41. DOI:10.1007/s000110050256

Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). A precious bio-resource in Agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology,7 : 529. doi: 10.3389/fmicb.2016.00529

Teimouri, M., Amirkolaie, A. K., & Yeganeh, S. (2013). The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture, 396: 14-19, https://doi.org/10.1016/j.aquaculture.2013.02.009 .

Usharani, G., Srinivasan, G., Sivasakthi, S. & Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9(5): 292-298. DOI: 10.5829/idosi.abr.2015.9.5.9610

Whitton, B. A. & Potts, M. (2000). Introduction to the cyanobacteria. In: Whitton, B. A., Potts, M (eds), The Ecology of Cyanobacteria. Kluwer, Amsterdam, (in press).

Widowati, I., Zainuri M., Kusumaningrum H. P., Susilowati R., Hardivillier Y., Bourgougnon N., & Mouget, J. (2017). Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti In: 2nd International Conference on Tropical and Coastal Region Eco Development-IOP Conf. Series: Earth and Environmental Science doi:10.1088/1755 1315/55/1/012067

Win, T, T, Barone, G. D., Secundo, F. & Fu, P. (2018). Algal biofertilizers and plant growth stimulants for sustainable agriculture. Industrial Biotechnology, 14 (4). Mary Ann Liebert, Inc. https://doi.org/10.1089/ind.2018.0010

Zaid, A. A. A., Hammad, D. M. & Sharaf, E. M. (2015). Antioxidant and anticancer activity of Spirulina platensis water extracts. International Journal of Pharmacology, 11(7): 846-851©Asian Network for Scientific Information. DOI: 10.3923/ijp.2015.846.851

Zeller, M. A., Hunt, R., Jones, A., & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science, 130(5): 3263-3275. https://doi.org/10.1002/app.39559.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Ilmiah Perikanan dan Kelautan

 JIPK IS INDEXED BY :

                  

       

     

                      

           

 

             

          

     

                  

      

      

       

     

     

       

                     

View JIPK Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

 

EDITORIAL  OFFICE

JURNAL ILMIAH PERIKANAN DAN KELAUTAN (JIPK) /SCIENTIFIC JOURNAL OF FISHERIES AND MARINE

FAKULTAS PERIKANAN DAN KELAUTAN, UNIVERSITAS AIRLANGGA
Kampus C UNAIR, Jl. Dharmahusada Permai No.330, Mulyorejo,
Kota Surabaya, Provinsi Jawa Timur. Indonesia. 60115
Telepon: (031) 5911451
Fax. (031) 5965741
Email : jipk@fpk.unair.ac.id

 

 

 This Journal is Supported by