Date Log
Copyright (c) 2021 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Immobilization of Providencia stuartii Cells in Papaya Trunk Wood for N-acetylglucosamine Production from Pennaeus vannamei Shrimp Shells
Corresponding Author(s) : Yuniwaty Halim
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 13 No. 2 (2021): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
Abstract
Chitin is a natural compound found abundantly in shrimp shells. Chitin can be degraded to produce N-acetylglucosamine, which has wide applications in the food and pharmaceutical fields. Fermentation using chitinolytic microorganisms can be used to produce N-acetylglucosamine from shrimp shells' chitin. One of the strong chitinolytic bacteria that was isolated from previous research was Providencia stuartii. To provide better stability and efficiency in fermentation, P. stuartii cells were immobilized using entrapment method in papaya trunk wood. The aims of this research were to determine the optimum papaya trunk wood size, ratio of papaya trunk wood and growth medium, as well as the optimum fermentation cycle to produce N-acetylglucosamine from P. vannamei shrimp shells using submerged fermentation method. The research used experimental method with treatment of different sizes of papaya trunk wood (1 x 1 x 1 cm3, 1.5 x 1.5 x 1.5 cm3, and 2 x 2 x 2 cm3), different ratio of papaya trunk wood and growth medium (1:10, 1:15 and 1:20), and 4 fermentation cycles. Results showed that papaya trunk wood with size of 1 x 1 x 1 cm3 and ratio (w/v) of 1:10 could immobilize 87.08±2.05% of P. stuartii cells and produce the highest N-acetylglucosamine concentration, which was 238177.78±3153.48 ppm. The highest N-acetylglucosamine production was obtained from first fermentation cycle and decreased over the last three cycles, but still produced high concentration of N-acetylglucosamine. Therefore, it is possible to perform continuous N-acetylglucosamine production from shrimp shells using P. stuartii cells immobilized in papaya trunk wood.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Adinarayana, K., Jyothi, B., & Ellaiah, P. (2005). Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharmaceutical Science Technology, 6(3):391-397.
- Amelia, F., Yustiati, A., & Andriani, Y. (2021). Review of shrimp (Litopenaeus vannamei (Boone, 1931) farming in Indonesia: management operating and development. World Scientific News, 158:145-158.
- Arbia, W., Arbia, L. Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods - a review. Food Technology Biotechnology, 51(1):12-25.
- Association of Official Analytical Chemist [AOAC]. (2005). Official methods of analysis of the Association of Official Analytical Chemist. Virginia: Association of Official Analytical Chemist Inc.
- Ayangbenro, A. S. (2017). Biodegradation of natural bitumen by Providencia stuartii isolated from heavy oil contaminated soil. NEST Journal, 19(2):353-358.
- Ayu, N. (2019). Produksi N-asetilglukosamin secara fermentasi dari tepung cangkang udang menggunakan Providencia stuartii. Bachelor Thesis. Tangerang, Indonesia: Universitas Pelita Harapan.
- Bhattacharya, D., Nagpure, A., & Gupta, R. K. (2007). Bacterial chitinases: properties and potential. Critical Reviews in Biotechnology, 27(1):21-28.
- Brzezinska, M. S., Jankiewicz, U., Burkowska, A., & Walczak, M. (2014). Chitinolytic microorganisms and their possible application in environmental protection. Journal of Current Microbiology, 68(1):71-81.
- Cheba, B. A. (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry, 6(3):149-153.
- Chen, J-K., Shen, C-R., & Liu, C-L. (2010). N-acetylglucosamine: production and applications. Marine Drugs, 8(9):2493-2516.
- Demir, D., Fatma, O., Seda, C., & Nimet, B. K. (2016). Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. Journal of The Turkish Chemical Society, 3(3):131-144.
- Elieh-Ali-Komi, D., & Hamblin, M. R. (2016). Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 4(3):411-427.
- Estela-Escalante, W. D., Perez-Escalante, J. J., Fuentes Navarro, E. L., & Pinillos-Miñano, R. M. (2020). The potential of using grapefruit peel as a natural support for yeast immobilization during beer fermentation. Chemical and Biochemical Engineering Quarterly, 34(2):105-114.
- Eş, I., Vieira, J. D. G., & Amaral, A. C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied of Microbiology and Biotechnology, 99(5):2065-2082.
- Genisheva, Z., Mussatto, S. I., Oliveira, J. M., & Teixeira, J. A. (2011). Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Industrial Crops and Products, 34(2011):979-985.
- Górecka, E., & JastrzÄ™bska, M. (2011). Immobilization techniques and biopolymer carriers. Biotechnology and Food Science, 75(1):65-86.
- Halim, Y., Hardoko, H., Handayani, R., & Lucida, V. (2018). Optimum conditions for N-acetylglucosamine production from tiger shrimp (Penaeus monodon) shell by Serratia marcescens. Asian Journal of Pharmaceutical and Clinical Research, 11(12):488-493.
- Halim, Y., Hendarlim, B. D., Hardoko, Handayani, R., & Rosa, D. (2019). Imobilisasi kitinase intraseluler Providencia stuartii dengan kalsium alginat dan aplikasinya dalam produksi N-asetilglukosamin. FaST-Jurnal Sains dan Teknologi, 3(2):35-44.
- Handoyo, B. C. (2019). Produksi N-asetilglukosamin dengan fermentasi menggunakan spora Mucor circinelloides terimobilisasi pada kalsium alginat. Bachelor Thesis. Tangerang, Indonesia: Universitas Pelita Harapan.
- Hardoko, Josephine, C., Handayani, R., & Halim, Y. (2020). Isolation, identification and chitinolytic index of bacteria from rotten tiger shrimp (Penaeus monodon) shells. AACL Bioflux, 13(1):360-371.
- Hongkulsup, C., Khutoryanskiy, V. V., & Niranjan, K. (2016). Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). Journal of Chemical Technology and Biotechnology, 91(5):1250-1256.
- Hrenovic, J., Ivankovic, T., & Tibljas, D. (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. Journal of Hazardous Materials, 166(2-3):1377-1382.
- Iqbal, M., & Saeed, A. (2005). Novel method for cell immobilization and its application for production of organic acid. Letters in Applied Microbiology, 40(3):178-182.
- Jiang, L., Ruan, Q., Li, R., & Li, T. (2013). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. Journal of Basic Microbiology, 53(3):224-230.
- Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199:42-48.
- Kim, S-K., & Mendis, E. (2006). Bioactive compounds from marine processing byproducts - a review. Food Research International, 39(4):383-393.
- Kim, S-K. (2011). Chitin, chitosan, oligosaccharides, and their derivatives: biological activities and applications. Boca Raton: CRC Press.
- Kim, T. I., Lim, D. H., Baek, K. S., Jang, S. S., Park, B. Y., & Mayakrishnan, V. (2018). Production of chitinase from Escherichia fergusonii, chitosanase from Chryseobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production. International Journal of Biological Macromolecules, 112:1115-1121.
- Kubomura, D., Ueno, T., Yamada, M., & Nagaoka, I. (2017). Evaluation of the chondroprotective action of N-acetylglucosamine in a rat experimental osteoarthritis model. Experimental and Therapeutic Medicine, 14:3137-3144.
- Kuyukina, M. S., Ivshina, I. B., Gavrin, A. Y., Podorozhko, E. A., Lozinsky, V. I., Jeffree, C. E., & Philp, J. C. (2006). Immobilization of hydrocarbon-oxidizing bacteria in poly (vinyl alcohol) cryogels hydrophobized using a biosurfactant. Journal of microbiological methods, 65(3):596-603.
- Kyriakou, M., Patsaloua, M., Xiaris, N., Tsevisc, A., Koutsokeras, L., Constantinides, G., & Koutinasa, M. (2020). Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: application in a citrus peel waste biorefinery. Renewable Energy, 155:53-64.
- Li, Y., Gao, F., Wei, W., Qu, J. B., Ma, G. H., & Zhou, W. Q. (2010). Pore size of macroporous polystyrene microspheres affects lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 66(1-2):182-189.
- Liu, L., Liu, Y., Shin, H., Chen, R., Li, J., Du, G., & Chen, J. (2013). Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Applied Microbiology and Biotechnology, 97:6149-6158.
- Liu, Y., Liu, L., Shin, H., Chen, R. R., Li, J., Du, G., & Chen, J. (2019). Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metabolic Engineering, 19:107-115.
- Liu, Y. Xing, R., Yang, H., Liu, S., Qin, Y., Li, K., Yu., H., & Li, P. (2020). Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. International Journal of Biological Macromolecules, 148:424-433.
- Ma, Y. L., Yang, B. L., & Zhao, J. L. (2006). Removal of H2S by Thiobacillus denitrificans immobilized on different matrices. Bioresource Technology, 97(16):2041-2046.
- Maduka, N., Emecheta, R. O., Ahaotu, I., Maduka, N., & Odu, N. N. (2019). Proximate composition of date fruits and sensory evaluation of date fruit wine clarified using Aspergillus strains immobilized on biomatrix. Science Park Journal of Applied Microbiology Research, 4(2):67-79.
- Malmiri, H. J., Jahanian, M. A. G., & Berenjian, A. (2012). Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. American Journal of Biochemistry and Biotechnology, 8(4):203-219.
- Martins, S. C. S., Martins, C. M., Fiuza, L. M. C. G., & Santaella, T. (2013). Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28):4412-4418.
- Manos, J., & Belas, R. (2006). The Genera Proteus, Providencia, and Morganella. In: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (Eds.), The Prokaryotes. (pp 245-269). New York: Springer.
- Nielsen, S. (2010). Food analysis (4th ed). New York: Springer Science+Business Media, LLC.
- Niknezhad, S. V., Asadollahia, M. A., Zamani, A., & Biria, D. (2016). Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. International Journal of Biological Macromolecules, 82:751-756.
- Sarafdeen Olateju Kareem
- Osho, M. B., Popoola, T., & Kareem, S. O. (2014). Immobilization of Aspergilus niger ATCC 1015 on bionatural structures for lipase production. Engineering in Life Sciences, 14:449-454.
- Pazarlioğlu, N. K., & Telefoncu, A. (2005). Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry, 40(5):1807-1814.
- Percot, A., Viton, C., & Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1):12-18.
- Saeed, A., Akhter, M. W., & Iqbal, M. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45(1):25-31.
- Sanusi, M. (2004). Transformasi kitin dari hasil isolasi limbah industri udang beku menjadi kitosan. Marina Chimica Acta, 5(2):28-32.
- Saparianti, E. (2012). Amobilisasi sel Pediococcus acidilactici F11 penghasil bakteriosin pada gel kalsium alginat. Jurnal Teknologi Pertanian. 2(1):1-9.
- Selig, M. J., Vinzant, T. B., Himmel, M. E., & Decker, S. R. (2009). The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Applied Biochemistry and Biotechnology, 155(1-3):94-103.
- Tanasale, M. F. J. D. P., Killay, A., & Saily, M. (2006). Kitosan dari limbah udang windu (Penaeus monodon) sebagai adsorben fenol. Alchemy Jurnal Penelitian Kimia, 5(1):23-30.
- Uno, K., Chaweepack, T., & Ruangpan, L. (2010). Pharmacokinetics and bioavailability of oxytetracycline in vannamei shrimp (Penaeus vannamei) and the effect of processing on the residues in muscle and shell. Aquaculture International, 18(6):1003-1015.
- Valdez-Peña, A. U., Espinoza-Perez, J. D., Sandoval-Fabian, G. C., Balagurusamy, N., Hernandez-Rivera, A., De-la-Garza-Rodriguez, I. M., & Contreras-Esquivel, J. C. (2010). Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Science and Biotechnology, 19(2):553-557.
- Vasquez, J. A., Ramos, P., Miron, J., Valcarcel, J., Sotelo, C., & Perez-Martin, R. (2017). Production of chitin from Penaeus vannamei by-products to pilot plant scale using a combination of enzymatic and chemical processes and subsequent optimization of the chemical production of chitosan by response surface methodology. Marine Drugs, 15(6):180.
- Wu, S. C., & Lia, Y. K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 54(3-4):103-108.
- Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources, structure, properties, and applications. Marine Drugs, 13(3):1133-1174.
- Zagrodnik, R., Thiel, M., Seifert, K., WÅ‚odarczak, M., & Åaniecki, M. (2013). Application of immobilized Rhodobacter sphaeroides bacteria in hydrogen generation process under semi-continuous conditions. International Journal of Hydrogen Energy, 38(18): 7632-7639.
- Zhou, D., Jiang, Z., Pang, Q., Zhu, Y, Wang, Q., & Qingsheng, Q. (2019). CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production. Applied and Environmental Microbiology, 85(21):1-11.
References
Adinarayana, K., Jyothi, B., & Ellaiah, P. (2005). Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharmaceutical Science Technology, 6(3):391-397.
Amelia, F., Yustiati, A., & Andriani, Y. (2021). Review of shrimp (Litopenaeus vannamei (Boone, 1931) farming in Indonesia: management operating and development. World Scientific News, 158:145-158.
Arbia, W., Arbia, L. Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods - a review. Food Technology Biotechnology, 51(1):12-25.
Association of Official Analytical Chemist [AOAC]. (2005). Official methods of analysis of the Association of Official Analytical Chemist. Virginia: Association of Official Analytical Chemist Inc.
Ayangbenro, A. S. (2017). Biodegradation of natural bitumen by Providencia stuartii isolated from heavy oil contaminated soil. NEST Journal, 19(2):353-358.
Ayu, N. (2019). Produksi N-asetilglukosamin secara fermentasi dari tepung cangkang udang menggunakan Providencia stuartii. Bachelor Thesis. Tangerang, Indonesia: Universitas Pelita Harapan.
Bhattacharya, D., Nagpure, A., & Gupta, R. K. (2007). Bacterial chitinases: properties and potential. Critical Reviews in Biotechnology, 27(1):21-28.
Brzezinska, M. S., Jankiewicz, U., Burkowska, A., & Walczak, M. (2014). Chitinolytic microorganisms and their possible application in environmental protection. Journal of Current Microbiology, 68(1):71-81.
Cheba, B. A. (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry, 6(3):149-153.
Chen, J-K., Shen, C-R., & Liu, C-L. (2010). N-acetylglucosamine: production and applications. Marine Drugs, 8(9):2493-2516.
Demir, D., Fatma, O., Seda, C., & Nimet, B. K. (2016). Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. Journal of The Turkish Chemical Society, 3(3):131-144.
Elieh-Ali-Komi, D., & Hamblin, M. R. (2016). Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 4(3):411-427.
Estela-Escalante, W. D., Perez-Escalante, J. J., Fuentes Navarro, E. L., & Pinillos-Miñano, R. M. (2020). The potential of using grapefruit peel as a natural support for yeast immobilization during beer fermentation. Chemical and Biochemical Engineering Quarterly, 34(2):105-114.
Eş, I., Vieira, J. D. G., & Amaral, A. C. (2015). Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied of Microbiology and Biotechnology, 99(5):2065-2082.
Genisheva, Z., Mussatto, S. I., Oliveira, J. M., & Teixeira, J. A. (2011). Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Industrial Crops and Products, 34(2011):979-985.
Górecka, E., & JastrzÄ™bska, M. (2011). Immobilization techniques and biopolymer carriers. Biotechnology and Food Science, 75(1):65-86.
Halim, Y., Hardoko, H., Handayani, R., & Lucida, V. (2018). Optimum conditions for N-acetylglucosamine production from tiger shrimp (Penaeus monodon) shell by Serratia marcescens. Asian Journal of Pharmaceutical and Clinical Research, 11(12):488-493.
Halim, Y., Hendarlim, B. D., Hardoko, Handayani, R., & Rosa, D. (2019). Imobilisasi kitinase intraseluler Providencia stuartii dengan kalsium alginat dan aplikasinya dalam produksi N-asetilglukosamin. FaST-Jurnal Sains dan Teknologi, 3(2):35-44.
Handoyo, B. C. (2019). Produksi N-asetilglukosamin dengan fermentasi menggunakan spora Mucor circinelloides terimobilisasi pada kalsium alginat. Bachelor Thesis. Tangerang, Indonesia: Universitas Pelita Harapan.
Hardoko, Josephine, C., Handayani, R., & Halim, Y. (2020). Isolation, identification and chitinolytic index of bacteria from rotten tiger shrimp (Penaeus monodon) shells. AACL Bioflux, 13(1):360-371.
Hongkulsup, C., Khutoryanskiy, V. V., & Niranjan, K. (2016). Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). Journal of Chemical Technology and Biotechnology, 91(5):1250-1256.
Hrenovic, J., Ivankovic, T., & Tibljas, D. (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. Journal of Hazardous Materials, 166(2-3):1377-1382.
Iqbal, M., & Saeed, A. (2005). Novel method for cell immobilization and its application for production of organic acid. Letters in Applied Microbiology, 40(3):178-182.
Jiang, L., Ruan, Q., Li, R., & Li, T. (2013). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. Journal of Basic Microbiology, 53(3):224-230.
Kim, J. S., Lee, Y. Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199:42-48.
Kim, S-K., & Mendis, E. (2006). Bioactive compounds from marine processing byproducts - a review. Food Research International, 39(4):383-393.
Kim, S-K. (2011). Chitin, chitosan, oligosaccharides, and their derivatives: biological activities and applications. Boca Raton: CRC Press.
Kim, T. I., Lim, D. H., Baek, K. S., Jang, S. S., Park, B. Y., & Mayakrishnan, V. (2018). Production of chitinase from Escherichia fergusonii, chitosanase from Chryseobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production. International Journal of Biological Macromolecules, 112:1115-1121.
Kubomura, D., Ueno, T., Yamada, M., & Nagaoka, I. (2017). Evaluation of the chondroprotective action of N-acetylglucosamine in a rat experimental osteoarthritis model. Experimental and Therapeutic Medicine, 14:3137-3144.
Kuyukina, M. S., Ivshina, I. B., Gavrin, A. Y., Podorozhko, E. A., Lozinsky, V. I., Jeffree, C. E., & Philp, J. C. (2006). Immobilization of hydrocarbon-oxidizing bacteria in poly (vinyl alcohol) cryogels hydrophobized using a biosurfactant. Journal of microbiological methods, 65(3):596-603.
Kyriakou, M., Patsaloua, M., Xiaris, N., Tsevisc, A., Koutsokeras, L., Constantinides, G., & Koutinasa, M. (2020). Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: application in a citrus peel waste biorefinery. Renewable Energy, 155:53-64.
Li, Y., Gao, F., Wei, W., Qu, J. B., Ma, G. H., & Zhou, W. Q. (2010). Pore size of macroporous polystyrene microspheres affects lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 66(1-2):182-189.
Liu, L., Liu, Y., Shin, H., Chen, R., Li, J., Du, G., & Chen, J. (2013). Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Applied Microbiology and Biotechnology, 97:6149-6158.
Liu, Y., Liu, L., Shin, H., Chen, R. R., Li, J., Du, G., & Chen, J. (2019). Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metabolic Engineering, 19:107-115.
Liu, Y. Xing, R., Yang, H., Liu, S., Qin, Y., Li, K., Yu., H., & Li, P. (2020). Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. International Journal of Biological Macromolecules, 148:424-433.
Ma, Y. L., Yang, B. L., & Zhao, J. L. (2006). Removal of H2S by Thiobacillus denitrificans immobilized on different matrices. Bioresource Technology, 97(16):2041-2046.
Maduka, N., Emecheta, R. O., Ahaotu, I., Maduka, N., & Odu, N. N. (2019). Proximate composition of date fruits and sensory evaluation of date fruit wine clarified using Aspergillus strains immobilized on biomatrix. Science Park Journal of Applied Microbiology Research, 4(2):67-79.
Malmiri, H. J., Jahanian, M. A. G., & Berenjian, A. (2012). Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. American Journal of Biochemistry and Biotechnology, 8(4):203-219.
Martins, S. C. S., Martins, C. M., Fiuza, L. M. C. G., & Santaella, T. (2013). Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28):4412-4418.
Manos, J., & Belas, R. (2006). The Genera Proteus, Providencia, and Morganella. In: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (Eds.), The Prokaryotes. (pp 245-269). New York: Springer.
Nielsen, S. (2010). Food analysis (4th ed). New York: Springer Science+Business Media, LLC.
Niknezhad, S. V., Asadollahia, M. A., Zamani, A., & Biria, D. (2016). Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. International Journal of Biological Macromolecules, 82:751-756.
Sarafdeen Olateju Kareem
Osho, M. B., Popoola, T., & Kareem, S. O. (2014). Immobilization of Aspergilus niger ATCC 1015 on bionatural structures for lipase production. Engineering in Life Sciences, 14:449-454.
Pazarlioğlu, N. K., & Telefoncu, A. (2005). Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry, 40(5):1807-1814.
Percot, A., Viton, C., & Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1):12-18.
Saeed, A., Akhter, M. W., & Iqbal, M. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45(1):25-31.
Sanusi, M. (2004). Transformasi kitin dari hasil isolasi limbah industri udang beku menjadi kitosan. Marina Chimica Acta, 5(2):28-32.
Saparianti, E. (2012). Amobilisasi sel Pediococcus acidilactici F11 penghasil bakteriosin pada gel kalsium alginat. Jurnal Teknologi Pertanian. 2(1):1-9.
Selig, M. J., Vinzant, T. B., Himmel, M. E., & Decker, S. R. (2009). The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Applied Biochemistry and Biotechnology, 155(1-3):94-103.
Tanasale, M. F. J. D. P., Killay, A., & Saily, M. (2006). Kitosan dari limbah udang windu (Penaeus monodon) sebagai adsorben fenol. Alchemy Jurnal Penelitian Kimia, 5(1):23-30.
Uno, K., Chaweepack, T., & Ruangpan, L. (2010). Pharmacokinetics and bioavailability of oxytetracycline in vannamei shrimp (Penaeus vannamei) and the effect of processing on the residues in muscle and shell. Aquaculture International, 18(6):1003-1015.
Valdez-Peña, A. U., Espinoza-Perez, J. D., Sandoval-Fabian, G. C., Balagurusamy, N., Hernandez-Rivera, A., De-la-Garza-Rodriguez, I. M., & Contreras-Esquivel, J. C. (2010). Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Science and Biotechnology, 19(2):553-557.
Vasquez, J. A., Ramos, P., Miron, J., Valcarcel, J., Sotelo, C., & Perez-Martin, R. (2017). Production of chitin from Penaeus vannamei by-products to pilot plant scale using a combination of enzymatic and chemical processes and subsequent optimization of the chemical production of chitosan by response surface methodology. Marine Drugs, 15(6):180.
Wu, S. C., & Lia, Y. K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 54(3-4):103-108.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources, structure, properties, and applications. Marine Drugs, 13(3):1133-1174.
Zagrodnik, R., Thiel, M., Seifert, K., WÅ‚odarczak, M., & Åaniecki, M. (2013). Application of immobilized Rhodobacter sphaeroides bacteria in hydrogen generation process under semi-continuous conditions. International Journal of Hydrogen Energy, 38(18): 7632-7639.
Zhou, D., Jiang, Z., Pang, Q., Zhu, Y, Wang, Q., & Qingsheng, Q. (2019). CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production. Applied and Environmental Microbiology, 85(21):1-11.