Date Log
Copyright (c) 2021 Jurnal Ilmiah Perikanan dan Kelautan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
The Effectiveness of Seaweeds as Biofilter for Reducing Wastewater Nutrient and Preventing Water Pollution from Hybrid Grouper Culture
Corresponding Author(s) : Ratih Ida Adharini
Jurnal Ilmiah Perikanan dan Kelautan, Vol. 13 No. 2 (2021): JURNAL ILMIAH PERIKANAN DAN KELAUTAN
Abstract
Highlight Research
- Wastewater in hybrid grouper culture should be maintain before resirculate and dispose to aquatic environment to avoid eutrophication.
- Seaweed that is used for biofilter must be observed for its suitability, performance and effectivity.
- Ulva sp. has the best effectiveness to reduce nutrient in wastewater of hybrid grouper aquaculture by absorbing then stored into thallus.
- Ulva sp. is proven has the best SGR and adaptability in wastewater of hybrid grouper culture.
Abstract
Wastewater generated from hybrid grouper culture needs to be managed to improve water quality before being recirculated, or discharged in the aquatic environment. Seaweed biofilter has been proposed in wastewater treatment technology for marine fish farming. This study aimed at comparing which of these species i.e. Ulva sp., Sargassum sp., Gelidium sp., and Dictyota sp. work best to absorb nutrient wastewater hybrid grouper culture. This research utilized these seaweed as treatments and controls with three replications using Completely Randomized Design. A statistical analysis was conducted to investigate the significant differences in the nutrient absorptions among various seaweed species by using ANOVA and least significant difference. Non-parametric tests namely Kruskal-Walis, Mann-Whitney, and t-test were used with confidence interval of 95%. The results revealed that Ulva sp. has the best ability to reduce the Nitrogen 80%, while Dictyota able to reduce Phosphor 88% by Dictyota sp. generated from wastewater of hybrid grouper culture. While the highest absorbtion of Total Kjeldahl Nitrogen (104%) and phosphate (182%) that stored in thallus were performed by Ulva sp. Ulva sp. had the best performance and highest growth rate (1.9% d-1) as biofilter in hybrid grouper cultivation than other species.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Abreu, M., Pereira, R., Yarish, C., Buschmann, A. H., & Sousa-Pinto, I. (2011). IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312(1-4):77-87.
- Akinwole, A. O., Dauda, A. B. & Ololade, O. A. (2016). Growth performance of african catfish (Clarias gariepinus) juveniles reared in wastewater treated with alum and Moringa oleifera seed. Journal of Aquaculture Research & Development, 7(12):1000460.
- Andayani, S., Yuwanita, R., & Izzah, N. (2016). Biofilter application using seaweed (Gracilaria verrucosa) to increase production of vannamei shrimp in traditional pond district Bangil-Pasuruan. Research Journal of Life Science, 3(1):16-22.
- Anibal, J., Madeira, H. T., Carvalho, L. F., Esteves, E., Veiga-Pires, C., & Rocha, C. (2013). Macroalgae mitigation potential for fish aquaculture effluents: an approach coupling nitrogen uptake and metabolic pathways using Ulva rigida and Enteromorpha clathrata. Environmental Science and Pollution Research, 21(23):13324-13334.
- Anita, N. S., & Dewi, N. N. (2020). Evaluation of hatching rate, growth performance, and survival rate of cantang grouper (Epinephelus fuscoguttatus x lanceolatus) in concrete pond at Situbondo, East Java, Indonesia. IOP Conf. Series: Earth and Environmental Science, 441(2020):012019.
- Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: a review. International Journal of Environmental Research and Public Health, 15(12):2851.
- Carneiro, M. A. A., Freire, F. A. M., & Marinho-Soriano, E. (2011). Study on biofiltration capacity and kinetics of nutrient uptake by Gracilaria cervicornis (Turner) J. Agardh (Rhodophyta, Gracilariaceae). Brazilian Journal of Pharmacognosy, 21(2):329-333.
- Castellar, B., Pontes, M. D., Costa, W. d. M., Moura, L. C. F., Dias, G. E., Landuci, F. S., & Reis, R. P. (2015). Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, Sí£o Paulo, 41:763-770.
- De, M., Ghaffar, M. A., & Das, S. K. (2014). Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP conference proceedings, 1614:616-618.
- Edwards, P. (2015). Aquaculture environment interactions: past, present and likely future trends. Aquaculture, 447:2-14.
- Elizondo-González, R., Quiroz-Gusmán, E., Escobedo-Fregoso, C., Magallón-Servín, P., & Peña-Rodríguez, A. (2018) Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. Peer Journal - Life & Environment, 6:e4459.
- FAO (2020). The state of world fisheries and aquaculture, sustainability in action. Rome: Food and Agriculture Organization of the United Nations.
- Hayashi, L., Yokoya , N. S., Ostini, S., Pereira, R. T. L., Braga, E. S., & Oliveira, E. C. (2008). Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277:185-191.
- Kang, Y. H., Park, S. R., & Chung, I. K. (2011). Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae, 26(1):97-108.
- KKP (Ministry of Marine and Fisheries). (2018). Buku Pintar Kementerian Kelautan Perikanan. Pusat Data, Statistik, dan Informasi. Jakarta: Kementerian Kelautan dan Perikanan.
- Laramore, S., Baptiste, R., Wills, P. S., & Hanisak, M. D. (2018). Utilization of IMTA-produced Ulva lactuca to supplement or partially replaced pelleted diests in shrimps (Litopenaeus vannamei) reared in a clear water production system. Journal of Applied Phycology, 30:3603-3610.
- Li, J., Liu, Y., Liu, Y., Wang, Q., Gao, X., & Gong, Q. (2019). Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). Journal of Applied Phycology, 31:3061-3068.
- Liang, H. F., Huang, D. K., Wu, Y. H., Wang, C. Q., & Zhong, W. J. (2013). Effects of temperature and salinity on survival and food intake of grouper hybrid (Epinephelus lanceolatus ♀ x Epinephelus fuscoguttatus ♂). Journal of Guangdong Ocean University, 33:22-26.
- Macchiavello, J., & Bulboa, C. (2014). Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Latin American Journal of Aquatic Reseach, 42(3):523-253.
- Mantri, V. A., Kazi, M. A., Balar, N. J., Gupta, V., & Gajaria, T. (2020). Concise review of green algal genus Ulva Linnaeus. Journal of Applied Phycology, 32:2725-2741.
- Marinho-Soriano, E., Nunes, S. O., Carneiro, M. A. A., Pereira, D. C. (2009). Nutrients' removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass and Bioenergy, 33(2):327-331.
- Matos, J., Costa, S., Rodrigues, A., Pereira, R., & Pinto, I. S. (2006). Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252:31-42.
- Neori, A., Msuya, F. E., Shauli, L., Schuenhoff, A., & Shpigel, M. (2003). A novel three-stage seaweed (Ulva lactucai) biofilter design for integrated mariculture. Journal of Applied Phycology, 15:543-553.
- Ribeiro, A. L. N. L., Chiozzini, V. G., Braga, E. S., & Yokoya, N. S. (2017). Physiological responses and biofilter potential of Hypnea aspera (Rhodophyta, Gigartinales) cultivated in different availabilities of nitrate, ammonium, and phosphate. Journal of Applied Phycology, 29:683-694.
- Roleda, M.Y., & Hurd, C. L. (2019). Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 58(5): 552-562.
- Rosenberg, G., & Ramus, J. (1984). Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquatic Botany, 19(1-2):65-72.
- Santhi, N., Deivasigamani, B., & Subramanian, V. (2017). Studies on biodegradation of shrimp farm wastes by using of seaweeds. International Journal of Current Microbiology Applied Science, 6(1):271-281.
- Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F. E., & Neori, A. (2003). A semi-resirculating, integrated system for the culture of fish and seaweed. Aquaculture, 221:167-181.
- Tremblay-Gratton, A., Boussin, J. C., Tamigneaux, E., Vandenberg, G. W., & Le Francois, N. R. (2018). Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully resirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4¬ concentrations and temperature on growth and nutrient uptake. Journal of Applied Phycology, 30:1295-1304.
- Trianti, C. M. & Adharini, R. I. (2020). The utilization of Gracilaria verrucosa as shrimp ponds wastewater biofilter. Paper presented at the 3rd International Symposium on Marine and Fisheries Research (ISMFR). Fisheries Management, 02023:8.
- Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A. H., & Fang, J.G. (2009). Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297(1-4):1-9.
- Tsagkamilis, P., Danielidies, D., Dring, M. J., & Katsaros, C. (2010). Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (Ios Island, Aegean Sea, Greece). Journal of Applied Phycology, 22:331-339.
References
Abreu, M., Pereira, R., Yarish, C., Buschmann, A. H., & Sousa-Pinto, I. (2011). IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312(1-4):77-87.
Akinwole, A. O., Dauda, A. B. & Ololade, O. A. (2016). Growth performance of african catfish (Clarias gariepinus) juveniles reared in wastewater treated with alum and Moringa oleifera seed. Journal of Aquaculture Research & Development, 7(12):1000460.
Andayani, S., Yuwanita, R., & Izzah, N. (2016). Biofilter application using seaweed (Gracilaria verrucosa) to increase production of vannamei shrimp in traditional pond district Bangil-Pasuruan. Research Journal of Life Science, 3(1):16-22.
Anibal, J., Madeira, H. T., Carvalho, L. F., Esteves, E., Veiga-Pires, C., & Rocha, C. (2013). Macroalgae mitigation potential for fish aquaculture effluents: an approach coupling nitrogen uptake and metabolic pathways using Ulva rigida and Enteromorpha clathrata. Environmental Science and Pollution Research, 21(23):13324-13334.
Anita, N. S., & Dewi, N. N. (2020). Evaluation of hatching rate, growth performance, and survival rate of cantang grouper (Epinephelus fuscoguttatus x lanceolatus) in concrete pond at Situbondo, East Java, Indonesia. IOP Conf. Series: Earth and Environmental Science, 441(2020):012019.
Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: a review. International Journal of Environmental Research and Public Health, 15(12):2851.
Carneiro, M. A. A., Freire, F. A. M., & Marinho-Soriano, E. (2011). Study on biofiltration capacity and kinetics of nutrient uptake by Gracilaria cervicornis (Turner) J. Agardh (Rhodophyta, Gracilariaceae). Brazilian Journal of Pharmacognosy, 21(2):329-333.
Castellar, B., Pontes, M. D., Costa, W. d. M., Moura, L. C. F., Dias, G. E., Landuci, F. S., & Reis, R. P. (2015). Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca, Sí£o Paulo, 41:763-770.
De, M., Ghaffar, M. A., & Das, S. K. (2014). Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP conference proceedings, 1614:616-618.
Edwards, P. (2015). Aquaculture environment interactions: past, present and likely future trends. Aquaculture, 447:2-14.
Elizondo-González, R., Quiroz-Gusmán, E., Escobedo-Fregoso, C., Magallón-Servín, P., & Peña-Rodríguez, A. (2018) Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. Peer Journal - Life & Environment, 6:e4459.
FAO (2020). The state of world fisheries and aquaculture, sustainability in action. Rome: Food and Agriculture Organization of the United Nations.
Hayashi, L., Yokoya , N. S., Ostini, S., Pereira, R. T. L., Braga, E. S., & Oliveira, E. C. (2008). Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277:185-191.
Kang, Y. H., Park, S. R., & Chung, I. K. (2011). Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae, 26(1):97-108.
KKP (Ministry of Marine and Fisheries). (2018). Buku Pintar Kementerian Kelautan Perikanan. Pusat Data, Statistik, dan Informasi. Jakarta: Kementerian Kelautan dan Perikanan.
Laramore, S., Baptiste, R., Wills, P. S., & Hanisak, M. D. (2018). Utilization of IMTA-produced Ulva lactuca to supplement or partially replaced pelleted diests in shrimps (Litopenaeus vannamei) reared in a clear water production system. Journal of Applied Phycology, 30:3603-3610.
Li, J., Liu, Y., Liu, Y., Wang, Q., Gao, X., & Gong, Q. (2019). Effects of temperature and salinity on the growth and biochemical composition of the brown alga Sargassum fusiforme (Fucales, Phaeophyceae). Journal of Applied Phycology, 31:3061-3068.
Liang, H. F., Huang, D. K., Wu, Y. H., Wang, C. Q., & Zhong, W. J. (2013). Effects of temperature and salinity on survival and food intake of grouper hybrid (Epinephelus lanceolatus ♀ x Epinephelus fuscoguttatus ♂). Journal of Guangdong Ocean University, 33:22-26.
Macchiavello, J., & Bulboa, C. (2014). Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Latin American Journal of Aquatic Reseach, 42(3):523-253.
Mantri, V. A., Kazi, M. A., Balar, N. J., Gupta, V., & Gajaria, T. (2020). Concise review of green algal genus Ulva Linnaeus. Journal of Applied Phycology, 32:2725-2741.
Marinho-Soriano, E., Nunes, S. O., Carneiro, M. A. A., Pereira, D. C. (2009). Nutrients' removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass and Bioenergy, 33(2):327-331.
Matos, J., Costa, S., Rodrigues, A., Pereira, R., & Pinto, I. S. (2006). Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252:31-42.
Neori, A., Msuya, F. E., Shauli, L., Schuenhoff, A., & Shpigel, M. (2003). A novel three-stage seaweed (Ulva lactucai) biofilter design for integrated mariculture. Journal of Applied Phycology, 15:543-553.
Ribeiro, A. L. N. L., Chiozzini, V. G., Braga, E. S., & Yokoya, N. S. (2017). Physiological responses and biofilter potential of Hypnea aspera (Rhodophyta, Gigartinales) cultivated in different availabilities of nitrate, ammonium, and phosphate. Journal of Applied Phycology, 29:683-694.
Roleda, M.Y., & Hurd, C. L. (2019). Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 58(5): 552-562.
Rosenberg, G., & Ramus, J. (1984). Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquatic Botany, 19(1-2):65-72.
Santhi, N., Deivasigamani, B., & Subramanian, V. (2017). Studies on biodegradation of shrimp farm wastes by using of seaweeds. International Journal of Current Microbiology Applied Science, 6(1):271-281.
Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F. E., & Neori, A. (2003). A semi-resirculating, integrated system for the culture of fish and seaweed. Aquaculture, 221:167-181.
Tremblay-Gratton, A., Boussin, J. C., Tamigneaux, E., Vandenberg, G. W., & Le Francois, N. R. (2018). Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully resirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4¬ concentrations and temperature on growth and nutrient uptake. Journal of Applied Phycology, 30:1295-1304.
Trianti, C. M. & Adharini, R. I. (2020). The utilization of Gracilaria verrucosa as shrimp ponds wastewater biofilter. Paper presented at the 3rd International Symposium on Marine and Fisheries Research (ISMFR). Fisheries Management, 02023:8.
Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A. H., & Fang, J.G. (2009). Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297(1-4):1-9.
Tsagkamilis, P., Danielidies, D., Dring, M. J., & Katsaros, C. (2010). Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (Ios Island, Aegean Sea, Greece). Journal of Applied Phycology, 22:331-339.